Gov 50: 6. Causality

Matthew Blackwell

Harvard University

Roadmap

1. What is causality?
2. Data importing
3. Logicals

1/ What is causality?

Two roads diverged in a yellow wood, And sorry I could not travel both And be one traveler, long I stood And looked down one as far as I could To where it bent in the undergrowth;

What is a causal effect?

factual

vs.

counterfactual

- Does increasing the minimum wage increase the unemployment rate?
- Unemployment rate went up after the minimum wage increased
- Would it have gone up if the minimum wage increase not occurred?
- Does having girls affect a judge's rulings in court?
- A judge with a daughter gave a pro-choice ruling.
- Would they have done that if had a son instead?
- Fundamental problem of causal inference:
- Can never observe counterfactuals, must be inferred.

Political canvassing study

Political science

Durably reducing transphobia: A field experiment on door-to-door canvassing

David Broockman ${ }^{\text {™ }}$ and Joshua Kalla ${ }^{2}$
Existing research depicts intergroup prejudices as deeply ingrained, requiring intense intervention to lastingly reduce. Here, we show that a single approximately $10-$ minute conversation encouraging actively taking the perspective of others can markedly reduce prejudice for at least 3 months. We illustrate this potential with a door-to-door anvassing intervention in South Florida targeting antitransgender prejudice. Despite declines in homophobia, transphobia remains pervasive. For the intervention, 56 canvassers went door to door encouraging active perspective-taking with 501 voters at voters' doorsteps. A randomized trial found that these conversations substantially reduced transphobia, with decreases greater than Americans' average decrease in homophobia from 1998 to 2012. These effects persisted for 3 months, and oth transgender and nontransgender canvassers were effective. The intervention voters to counterarguments.

- Can canvassers change minds about topics like transgender rights?
- Experimental setting:
- Randomly assign canvassers to have a conversation about transgender right or a conversation about recycling.
- Trans rights conversations focused on "perspective taking"
- Outcome of interest: support for trans rights policies.

A tale of two respondents

Conversation Script Support for Nondiscrimination Law
Respondent 1 Recycling No
Respondent 2 Trans rights Yes

Did the second respondent support the law because of the perspective-taking conversation?

Translating into math

Useful to have compact notation for referring to treatment variable:

$$
T_{i}= \begin{cases}1 & \text { if respondent } i \text { had trans rights conversation } \\ 0 & \text { if respondent } i \text { had recycling conversation }\end{cases}
$$

Similar notation for the outcome variable:

$$
Y_{i}= \begin{cases}1 & \text { if respondent } i \text { supports trans nondiscrimination laws } \\ 0 & \text { if respondent } i \text { doesn't support nondiscrimination laws }\end{cases}
$$

i is a placeholder to refer to a generic unit/respondent: Y_{42} is the outcome for the 42nd unit.

A tale of two respondents (redux)

Conversation Script Support for Nondiscrimination Law

Respondent 1	Recycling	No
Respondent 2	Trans rights	Yes

becomes...

i	T_{i}	Y_{i}
Respondent 1	0	0
Respondent 2	1	1

Causal effects \& counterfactuals

- What does " T_{i} causes Y_{i} " mean? \rightsquigarrow counterfactuals, "what if"
- Would respondent change their support based on the conversation?
- Two potential outcomes:
- $Y_{i}(1)$: would respondent i support ND laws if they had trans rights script?
- $Y_{i}(0)$: would respondent i support ND laws if they had recycling script?
- Causal effect: $Y_{i}(1)-Y_{i}(0)$
- $Y_{i}(1)-Y_{i}(0)=0 \rightsquigarrow$ script has no effect on policy views
- $Y_{i}(1)-Y_{i}(0)=-1 \rightsquigarrow$ trans rights script lower support for laws
- $Y_{i}(1)-Y_{i}(0)=+1 \rightsquigarrow$ trans rights script increases support for laws

Potential outcomes

i	T_{i}	Y_{i}	$Y_{i}(1)$	$Y_{i}(0)$
Respondent 1	0	0	$? ? ?$	0
Respondent 2	1	1	1	???

- Fundamental problem of causal inference:
- We only observe one of the two potential outcomes.
- Observe $Y_{i}=Y_{i}(1)$ if $T_{i}=1$ or $Y_{i}=Y_{i}(0)$ if $T_{i}=0$
- To infer causal effect, we need to infer the missing counterfactuals!

Potential outcomes vs possible outcomes

- Potential outcomes are all about counterfactuals:
- What outcome would we see if I received treatment?
- Different from the possible values of the outcome
- the "vote" variable can take on a 0 or a 1.

How can we figure out counterfactuals?

- Find a similar unit! \rightsquigarrow matching
- Mill's method of difference
- Does respondent support law because of the trans rights script?
- \rightsquigarrow find a identical respondent who got the recycling script.
- NJ increased the minimum wage. Causal effect on unemployment?
- \rightsquigarrow find a state similar to NJ that didn't increase minimum wage.

Imperfect matches

- The problem: imperfect matches!
- Say we match i (treated) and j (control)
- Selection Bias: $Y_{i}(1) \neq Y_{j}(1)$
- Those who take treatment may be different that those who take control.
- How can we correct for that?

2/ Data importing

Organizing your project

Keep your workspace clean. Directories help organize. Future you will thank present you.

read_csv to load CSV files

read_csv will import a csv file and create a tibble:

```
library(tidyverse)
resume <- read_csv("data/resume.csv")
resume
```

\#\# \# A tibble: 4,870 x 4

\#\#	firstname sex	race call		
\#\#	<chr>	<chr>	<chr>	<dbl>
\#\#	1	Allison	female white	0

\#\# 2 Kristen female white 0
\#\# 3 Lakisha female black 0
\#\# 4 Latonya female black 0
\#\# 5 Carrie female white 0
\#\# 6 Jay male white 0
\#\# 7 Jill female white 0
\#\# 8 Kenya female black 0
\#\# 9 Latonya female black 0
\#\# 10 Tyrone male black 0

[^0]3/ Logicals

News data, redux

```
library(gov50data)
news <- na.omit(news)
news
```

\#\#		callsign	affiliation	date	weekday	ideology
\#\#		<chr>	<chr>	<date>	<ord>	<dbl>
\#\#	1	KECI	NBC	2017-06-07	Wed	0.0655
\#\#	2	KPAX	CBS	2017-06-07	Wed	0.0853
\#\#	3	KRBC	NBC	2017-06-07	Wed	0.0183
\#\#	4	KTAB	CBS	2017-06-07	Wed	0.0850
\#\#	5	KTMF	ABC	2017-06-07	Wed	0.0842
\#\#	6	KTXS	ABC	2017-06-07	Wed	-0.000488
\#\#	7	KAEF	ABC	2017-06-08	Thu	0.0426
\#\#	8	KBVU	FOX	2017-06-08	Thu	-0.0860
\#\#	9	KECI	NBC	2017-06-08	Thu	0.0902
\#\#	10	KPAX	CBS	2017-06-08	Thu	0.0668

\#\# \# i 2,550 more rows
\#\# \# i 5 more variables: national_politics <dbl>,
\#\# \# local_politics <dbl>, sinclair2017 <dbl>, post <dbl>,
\#\# \# month <ord>

Creating logical vectors

You can create logical vectors using mutate. We can use the . keep = "used" here to only show the variables used in this mutate call:

```
news |>
    mutate(
        right_leaning = ideology > 0,
        fall = month == "Sep" | month == "Oct" | month == "Nov",
        .keep = "used"
    )
```

\#\#		ideology	month	right_leaning	fall
\#\#		<dbl>	<ord>	<lgl>	<lgl>
\#\#	1	0.0655	Jun	TRUE	FALSE
\#\#	2	0.0853	Jun	TRUE	FALSE
\#\#	3	0.0183	Jun	TRUE	FALSE
\#\#	4	0.0850	Jun	TRUE	FALSE
\#\#	5	0.0842	Jun	TRUE	FALSE
\#\#	6	-0.000488	Jun	FALSE	FALSE
\#\#	7	0.0426	Jun	TRUE	FALSE
\#\#	8	-0.0860	Jun	FALSE	FALSE
\#\#	9	0.0902	Jun	TRUE	FALSE

Using the logical variables to filter

```
news |>
mutate(
    right_leaning = ideology > 0,
    fall = month == "Sep" | month == "Oct" | month == "Nov"
) |>
filter(right_leaning & fall)
```

\#\# \# A tibble: 1,050 x 12

\#\#		callsign	affiliation	date	weekday	ideology
\#\#		<chr>	<chr>	<date>	<ord>	<dbl>
\#\#	1	KBZK	CBS	2017-09-01	Fri	0.121
\#\#	2	KHSL	CBS	2017-09-01	Fri	0.0564
\#\#	3	KNVN	NBC	2017-09-01	Fri	0.0564
\#\#	4	KRCR	ABC	2017-09-01	Fri	0.324
\#\#	5	WCTI	ABC	2017-09-01	Fri	0.0649
\#\#	6	WCYB	NBC	2017-09-01	Fri	0.0613
\#\#	7	WEMT	FOX	2017-09-01	Fri	0.187
\#\#	8	WITN	NBC	2017-09-01	Fri	0.0297
\#\#	9	WJHL	CBS	2017-09-01	Fri	0.151
\#\#	10	WNCT	CBS	2017-09-01	Fri	0.186

\#\# \# i 1,040 more rows
\#\# \# i 7 more variables: national_politics <dbl>,

Using ! for not

To get the left-leaning fall broadcasts, negate the right_leaning logical:

```
news |>
    mutate(
        right_leaning = ideology > 0,
        fall = month == "Sep" | month == "Oct" | month == "Nov"
    ) |>
    filter(!right_leaning & fall)
```

\#\# \# A tibble: 167 x 12

\#\#		callsign	affiliation	date	weekday	ideology
\#\#		<chr>	<chr>	<date>	<ord>	<dbl>
\#\#	1	KRBC	NBC	2017-09-01	Fri	-0.0387
\#\#	2	KTVM	NBC	2017-09-01	F	-0.302
\#\#	3	WCTI	ABC	2017-09-04	Mon	-0.00694
\#\#	4	WEMT	FOX	2017-09-04	Mon	-0.0140
\#\#	5	KECI	NBC	2017-09-05	Tue	-0.0294
\#\#	6	KRCR	ABC	2017-09-05	Tue	-0.0113
\#\#	7	KTMF	ABC	2017-09-05	Tue	-0.105
\#\#	8	KTXS	ABC	2017-09-05	Tue	-0.0286
\#\#	9	KWYB	ABC	2017-09-05	Tue	-0.0462
\#\#	10	WCTI	ABC	2017-09-05	Tue	-0.0313

Order of operations

Why doesn't this work:

```
news |>
    filter(month == "Sep" | "Oct")
```

\#\# Error in `filter()`:
\#\# i In argument: `month == "Sep" | "Oct"`.
\#\# Caused by error in `month == "Sep" | "Oct"`:
\#\# ! operations are possible only for numeric, logical or complex types
month == "Sep" evaluates first!

More subtle bugs

```
news |>
mutate(
        month_num = as.numeric(month)
    ) |>
filter(month_num == 9 | 10)
```

\#\# \# A tibble: 2,560 x 11

\#\#		callsign	affiliation	date	weekday	ideology
\#\#		<chr>	<chr>	<date>	<ord>	<dbl>
\#\#	1	KECI	NBC	2017-06-07	Wed	0.0655
\#\#	2	KPAX	CBS	2017-06-07	Wed	0.0853
\#\#	3	KRBC	NBC	2017-06-07	Wed	0.0183
\#\#	4	KTAB	CBS	2017-06-07	Wed	0.0850
\#\#	5	KTMF	ABC	2017-06-07	Wed	0.0842
\#\#	6	KTXS	ABC	2017-06-07	Wed	-0.000488
\#\#	7	KAEF	ABC	2017-06-08	Thu	0.0426
\#\#	8	KBVU	FOX	2017-06-08	Thu	-0.0860
\#\#	9	KECI	NBC	2017-06-08	Thu	0.0902
\#\#	10	KPAX	CBS	2017-06-08	Thu	0.0668

\#\# \# i 2,550 more rows
\#\# \# i 6 more variables: national_politics <dbl>,
\#\# \# local_politics <dbl>, sinclair2017 <dbl>, post <dbl>,

all and any

all () tests if a vector is all TRUE and any () tests if any entry in a vector is true.

```
all(c(TRUE, TRUE, TRUE))
```

\#\# [1] TRUE
all(c(TRUE, FALSE, FALSE))
\#\# [1] FALSE
any(c(TRUE, FALSE, FALSE))
\#\# [1] TRUE
any(c(FALSE, FALSE, FALSE))
\#\# [1] FALSE

Grouped summaries with all/any

Can use these to summarize groups:

```
news |>
    group_by(callsign) |>
    summarize(
        any_liberal = any(ideology < 0),
        all_local = all(national_politics < local_politics)
    )
```

\#\#		calls	any_l	all_loc
\#\#		<chr>	<lgl>	<lgl>
\#\#	1	KAEF	TRUE	FALSE
\#\#	2	KBVU	TRUE	FALSE
\#\#	3	KBZK	TRUE	FALSE
\#\#	4	KCVU	TRUE	FALSE
\#\#	5	KECI	TRUE	FALSE
\#\#	6	KHSL	TRUE	FALSE
\#\#	7	KNVN	TRUE	FALSE
\#\#	8	KPAX	TRUE	FALSE
\#\#	9	KRBC	TRUE	FALSE
	10	KRCR	TRUE	FALSE

Converting logicals

When passed to sum() or mean(), TRUE is converted to 1 and FALSE is converted to 0 .

```
sum(c(TRUE, FALSE, TRUE, FALSE))
```

\#\# [1] 2
mean(c(TRUE, FALSE, TRUE, FALSE))
\#\# [1] 0.5

Grouped logical summaries with sum/means

```
news |>
    group_by(callsign) |>
    summarize(
        prop_liberal = mean(ideology < 0),
    num_local_bigger = sum(national_politics < local_politics)
)
```

\#\# \# A tibble: 22×3
\#\# callsign prop_liberal num_local_bigger
\#\# <chr> <dbl> <int>
\#\# 1 KAEF $0.138 \quad 111$
\#\# 2 KBVU $0.143 \quad 31$
\#\# 3 KBZK $0.0526 \quad 11$
\#\# 4 KCVU 0.18538
\#\# 5 KECI 0.13744
\#\# 6 KHSL 0.132127
\#\# 7 KNVN 0.115130
\#\# 8 KPAX 0.083374
\#\# 9 KRBC 0.196
\#\# 10 KRCR 0.0992
\#\# \# i 12 more rows

[^0]: \#\# \# i 4,860 more rows

