# Gov 50: 8. Observational Studies

Matthew Blackwell

Harvard University



· Can newspaper endorsements change voters' minds?



- Can newspaper endorsements change voters' minds?
- Why not compare vote choice of readers of different papers?



- · Can newspaper endorsements change voters' minds?
- Why not compare vote choice of readers of different papers?
  - Problem: readers choose papers based on their previous beliefs.



- · Can newspaper endorsements change voters' minds?
- Why not compare vote choice of readers of different papers?
  - Problem: readers choose papers based on their previous beliefs.
  - Liberals  $\rightsquigarrow$  New York Times, conservatives  $\rightsquigarrow$  Wall Street Journal.



- · Can newspaper endorsements change voters' minds?
- Why not compare vote choice of readers of different papers?
  - Problem: readers choose papers based on their previous beliefs.
  - Liberals  $\rightsquigarrow$  New York Times, conservatives  $\rightsquigarrow$  Wall Street Journal.
- Study for today: British newspapers switching their endorsements.



- · Can newspaper endorsements change voters' minds?
- Why not compare vote choice of readers of different papers?
  - Problem: readers choose papers based on their previous beliefs.
  - Liberals  $\rightsquigarrow$  New York Times, conservatives  $\rightsquigarrow$  Wall Street Journal.
- Study for today: British newspapers switching their endorsements.
  - Some newspapers endorsing Tories in 1992 switched to Labour in 1997.



- · Can newspaper endorsements change voters' minds?
- Why not compare vote choice of readers of different papers?
  - Problem: readers choose papers based on their previous beliefs.
  - Liberals  $\rightsquigarrow$  New York Times, conservatives  $\rightsquigarrow$  Wall Street Journal.
- Study for today: British newspapers switching their endorsements.
  - Some newspapers endorsing Tories in 1992 switched to Labour in 1997.
  - **Treated group**: readers of Tory  $\rightarrow$  Labour papers.



- · Can newspaper endorsements change voters' minds?
- Why not compare vote choice of readers of different papers?
  - Problem: readers choose papers based on their previous beliefs.
  - Liberals  $\rightsquigarrow$  New York Times, conservatives  $\rightsquigarrow$  Wall Street Journal.
- Study for today: British newspapers switching their endorsements.
  - Some newspapers endorsing Tories in 1992 switched to Labour in 1997.
  - **Treated group**: readers of Tory  $\rightarrow$  Labour papers.
  - Control group: readers of papers who didn't switch.

| Name          | Description                                                                               |
|---------------|-------------------------------------------------------------------------------------------|
| to_labour     | Read a newspaper that switched endorsement to Labour between 1992 and 1997 (1=Yes, 0=No)? |
| vote_lab_92   | Did respondent vote for Labour in 1992 election (1=Yes, 0=No)?                            |
| vote_lab_97   | Did respondent vote for Labour in 1997 election (1=Yes, 0=No)?                            |
| age           | Age of respondent                                                                         |
| male          | Does the respondent identify as Male (1=Yes, 0=No)?                                       |
| parent_labour | Did the respondent's parents vote for Labour (1=Yes, 0=No)?                               |
| work_class    | Does the respondent identify as working class (1=Yes, 0=No)?                              |

# library(tidyverse) library(gov50data) newspapers

| ## # A tibble: 1,593 x 7 |     |                                                                                                                            |     |                        |                       |             |             |  |
|--------------------------|-----|----------------------------------------------------------------------------------------------------------------------------|-----|------------------------|-----------------------|-------------|-------------|--|
| ##                       |     | to_labour vote_lab                                                                                                         | _92 | <pre>vote_lab_97</pre> | age                   | male        |             |  |
| ##                       |     | <dbl> <d< td=""><td> bl&gt;</td><td><dbl></dbl></td><td><hvn_lbll></hvn_lbll></td><td><dbl></dbl></td><td></td></d<></dbl> | bl> | <dbl></dbl>            | <hvn_lbll></hvn_lbll> | <dbl></dbl> |             |  |
| ##                       | 1   | Θ                                                                                                                          | 1   | 1                      | 33                    | Θ           |             |  |
| ##                       | 2   | Θ                                                                                                                          | 1   | Θ                      | 51                    | Θ           |             |  |
| ##                       | 3   | Θ                                                                                                                          | 0   | Θ                      | 46                    | Θ           |             |  |
| ##                       | 4   | Θ                                                                                                                          | 1   | 1                      | 45                    | 1           |             |  |
| ##                       | 5   | Θ                                                                                                                          | 1   | 1                      | 29                    | Θ           |             |  |
| ##                       | 6   | Θ                                                                                                                          | 1   | 1                      | 47                    | 1           |             |  |
| ##                       | 7   | Θ                                                                                                                          | 1   | 1                      | 34                    | 1           |             |  |
| ##                       | 8   | Θ                                                                                                                          | 1   | 1                      | 31                    | Θ           |             |  |
| ##                       | 9   | Θ                                                                                                                          | 1   | 1                      | 24                    | 1           |             |  |
| ##                       | 10  | 1                                                                                                                          | 1   | 1                      | 48                    | Θ           |             |  |
| ##                       | # i | 1,583 more rows                                                                                                            |     |                        |                       |             |             |  |
| ##                       | # i | 2 more variables:                                                                                                          | pai | rent_labour            | <dbl>, work</dbl>     | class       | <dbl></dbl> |  |

• Example of an **observational study**:

- Example of an **observational study**:
  - We as researchers observe a naturally assigned treatment

- Example of an **observational study**:
  - We as researchers observe a naturally assigned treatment
  - Very common: often can't randomize for ethical/logistical reasons.

- Example of an **observational study**:
  - We as researchers observe a naturally assigned treatment
  - Very common: often can't randomize for ethical/logistical reasons.
- **Internal validity**: are the causal assumption satisfied? Can we interpret this as a causal effect?

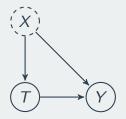
- Example of an observational study:
  - We as researchers observe a naturally assigned treatment
  - Very common: often can't randomize for ethical/logistical reasons.
- **Internal validity**: are the causal assumption satisfied? Can we interpret this as a causal effect?
  - RCTs usually have higher internal validity.

- Example of an **observational study**:
  - We as researchers observe a naturally assigned treatment
  - Very common: often can't randomize for ethical/logistical reasons.
- **Internal validity**: are the causal assumption satisfied? Can we interpret this as a causal effect?
  - RCTs usually have higher internal validity.
  - Observational studies less so because treatment and control groups may differ in ways that are hard to measure

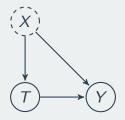
- Example of an observational study:
  - We as researchers observe a naturally assigned treatment
  - Very common: often can't randomize for ethical/logistical reasons.
- **Internal validity**: are the causal assumption satisfied? Can we interpret this as a causal effect?
  - RCTs usually have higher internal validity.
  - Observational studies less so because treatment and control groups may differ in ways that are hard to measure
- **External validity**: can the conclusions/estimated effects be generalized beyond this study?

- Example of an observational study:
  - We as researchers observe a naturally assigned treatment
  - Very common: often can't randomize for ethical/logistical reasons.
- **Internal validity**: are the causal assumption satisfied? Can we interpret this as a causal effect?
  - RCTs usually have higher internal validity.
  - Observational studies less so because treatment and control groups may differ in ways that are hard to measure
- **External validity**: can the conclusions/estimated effects be generalized beyond this study?
  - RCTs weaker here because often very expensive to conduct on representative samples.

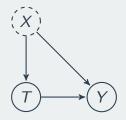
- Example of an observational study:
  - We as researchers observe a naturally assigned treatment
  - Very common: often can't randomize for ethical/logistical reasons.
- **Internal validity**: are the causal assumption satisfied? Can we interpret this as a causal effect?
  - RCTs usually have higher internal validity.
  - Observational studies less so because treatment and control groups may differ in ways that are hard to measure
- **External validity**: can the conclusions/estimated effects be generalized beyond this study?
  - RCTs weaker here because often very expensive to conduct on representative samples.
  - Observational studies often have larger/more representative samples that improve external validity.



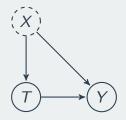
• **Confounder**: pre-treatment variable affecting treatment & the outcome.



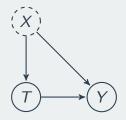
- Confounder: pre-treatment variable affecting treatment & the outcome.
  - Leftists (X) more likely to read newspapers switching to Labour (T).



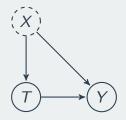
- · Confounder: pre-treatment variable affecting treatment & the outcome.
  - Leftists (X) more likely to read newspapers switching to Labour (T).
  - Leftists (X) also more likely to vote for Labour (Y).



- · Confounder: pre-treatment variable affecting treatment & the outcome.
  - Leftists (X) more likely to read newspapers switching to Labour (T).
  - Leftists (X) also more likely to vote for Labour (Y).
- Confounding bias in the estimated SATE due to these differences



- · Confounder: pre-treatment variable affecting treatment & the outcome.
  - Leftists (X) more likely to read newspapers switching to Labour (T).
  - Leftists (X) also more likely to vote for Labour (Y).
- **Confounding bias** in the estimated SATE due to these differences
  - $\overline{Y}_{\text{control}}$  not a good proxy for  $\frac{1}{n} \sum_{i=1}^{n} Y_i(0)$  in treated group.



- · Confounder: pre-treatment variable affecting treatment & the outcome.
  - Leftists (X) more likely to read newspapers switching to Labour (T).
  - Leftists (X) also more likely to vote for Labour (Y).
- **Confounding bias** in the estimated SATE due to these differences
  - $\overline{Y}_{\text{control}}$  not a good proxy for  $\frac{1}{n} \sum_{i=1}^{n} Y_i(0)$  in treated group.
  - one type: selection bias from self-selection into treatment

• How can we find a good comparison group?

- How can we find a good comparison group?
- Depends on the data we have available.

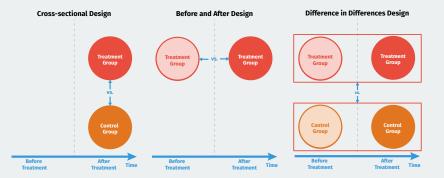
- How can we find a good comparison group?
- Depends on the data we have available.
- Three general types of observational study **reseach designs**:

- How can we find a good comparison group?
- Depends on the data we have available.
- Three general types of observational study **reseach designs**:
  - 1. **Cross-sectional design**: compare outcomes treated and control units at one point in time.

- How can we find a good comparison group?
- Depends on the data we have available.
- Three general types of observational study **reseach designs**:
  - 1. **Cross-sectional design**: compare outcomes treated and control units at one point in time.
  - 2. **Before-and-after design**: compare outcomes before and after a unit has been treated, but need over-time data on treated group.

- How can we find a good comparison group?
- Depends on the data we have available.
- Three general types of observational study **reseach designs**:
  - 1. **Cross-sectional design**: compare outcomes treated and control units at one point in time.
  - 2. **Before-and-after design**: compare outcomes before and after a unit has been treated, but need over-time data on treated group.
  - 3. **Difference-in-differences design**: use before/after information for the treated and control group; need over-time on treated & control group.

### **Research designs**



#### **Cross-sectional design**

• Compare treated/control groups after treatment happens.

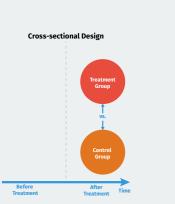


#### **Cross-sectional Design**

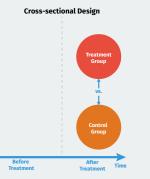
- Compare treated/control groups after treatment happens.
  - Switching readers vs non-switching readers in 1997.



#### **Cross-sectional Design**



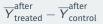
- Compare treated/control groups after treatment happens.
  - Switching readers vs non-switching readers in 1997.
- **Assumption**: groups identical on average (like RCTs)



- Compare treated/control groups after treatment happens.
  - Switching readers vs non-switching readers in 1997.
- **Assumption**: groups identical on average (like RCTs)
  - Sometimes called **unconfoundedness** or **as-if randomized**.

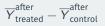


- Compare treated/control groups after treatment happens.
  - Switching readers vs non-switching readers in 1997.
- **Assumption**: groups identical on average (like RCTs)
  - Sometimes called **unconfoundedness** or **as-if randomized**.
- Cross-section estimate:





- Compare treated/control groups after treatment happens.
  - Switching readers vs non-switching readers in 1997.
- **Assumption**: groups identical on average (like RCTs)
  - Sometimes called **unconfoundedness** or **as-if randomized**.
- Cross-section estimate:



• Could there be confounders?

```
switched <- newspapers |>
filter(to_labour == 1) |>
summarize(mean(vote_lab_97))
```

```
no_change <- newspapers |>
filter(to_labour == 0) |>
summarize(mean(vote_lab_97))
```

switched - no\_change

## mean(vote\_lab\_97)
## 1 0.14

• Statistical control: adjust for confounders using statistical procedures.

- Statistical control: adjust for confounders using statistical procedures.
  - Can help to reduce confounding bias.

- Statistical control: adjust for confounders using statistical procedures.
  - Can help to reduce confounding bias.
- One type of statistical control: **subclassification**

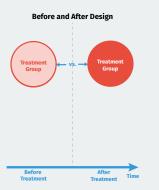
- Statistical control: adjust for confounders using statistical procedures.
  - Can help to reduce confounding bias.
- One type of statistical control: **subclassification** 
  - Compare treated and control groups within levels of a confounder.

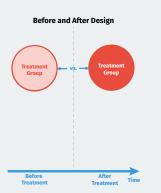
- Statistical control: adjust for confounders using statistical procedures.
  - Can help to reduce confounding bias.
- One type of statistical control: **subclassification** 
  - Compare treated and control groups within levels of a confounder.
  - Remaining effect can't be due to the confounder.

- Statistical control: adjust for confounders using statistical procedures.
  - Can help to reduce confounding bias.
- One type of statistical control: subclassification
  - · Compare treated and control groups within levels of a confounder.
  - Remaining effect can't be due to the confounder.
- Threat to inference: we can only control for observed variables  $\rightsquigarrow$  threat of unmeasured confounding

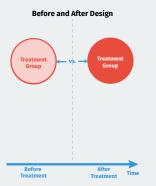
```
newspapers |>
group_by(parent_labour, to_labour) |>
summarize(avg_vote = mean(vote_lab_97)) |>
pivot_wider(
    names_from = to_labour,
    values_from = avg_vote
) |>
mutate(diff_by_parent = `1` - `0`)
```

• Compare readers of party-switching newspapers before & after switch.





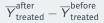
- Compare readers of party-switching newspapers before & after switch.
- Advantage: all person-specific features held fixed

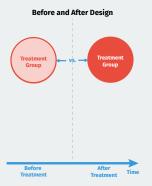


- Compare readers of party-switching newspapers before & after switch.
- Advantage: all person-specific features held fixed
  - comparing within a person over time.



- Compare readers of party-switching newspapers before & after switch.
- Advantage: all person-specific features held fixed
  - comparing within a person over time.
- Before-and-after estimate:

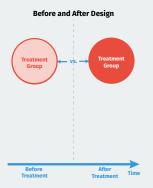




- Compare readers of party-switching newspapers before & after switch.
- Advantage: all person-specific features held fixed
  - comparing within a person over time.
- Before-and-after estimate:

 $\overline{Y}_{\text{treated}}^{\text{after}} - \overline{Y}_{\text{treated}}^{\text{before}}$ 

• Assumption: no time-varying confounders



- Compare readers of party-switching newspapers before & after switch.
- Advantage: all person-specific features held fixed
  - comparing within a person over time.
- Before-and-after estimate:

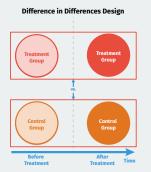
 $\overline{Y}_{\text{treated}}^{\text{after}} - \overline{Y}_{\text{treated}}^{\text{before}}$ 

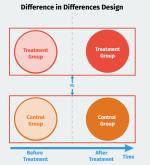
- Assumption: no time-varying confounders
  - Time trend: Labour just did better overall in 1997 compared to 1992.

```
newspapers |>
  mutate(
    vote_change = vote_lab_97 - vote_lab_92
) |>
  summarize(avg_change = mean(vote_change))
```

```
## # A tibble: 1 x 1
## avg_change
## <dbl>
## 1 0.119
```

 Use the before/after difference of control group to infer what would have happened to treatment group without treatment.





- Use the before/after difference of control group to infer what would have happened to treatment group without treatment.
- DiD estimate:

$$\underbrace{\left(\overline{Y}_{treated}^{after}-\overline{Y}_{treated}^{before}\right)}_{trend in treated group} - \underbrace{\left(\overline{Y}_{control}^{after}-\overline{Y}_{control}^{before}\right)}_{trend in control group}$$



- Use the before/after difference of control group to infer what would have happened to treatment group without treatment.
- DiD estimate:



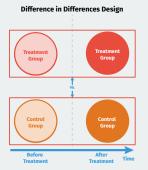
• Change in treated group above and beyond the change in control group.



- Use the before/after difference of control group to infer what would have happened to treatment group without treatment.
- DiD estimate:



- Change in treated group above and beyond the change in control group.
- Assumption: parallel trends



- Use the before/after difference of control group to infer what would have happened to treatment group without treatment.
- DiD estimate:



- Change in treated group above and beyond the change in control group.
- Assumption: parallel trends
  - Changes in vote of readers of non-switching papers roughly the same as changes that readers of switching papers would have been if they read non-switching papers.



- Use the before/after difference of control group to infer what would have happened to treatment group without treatment.
- DiD estimate:



- Change in treated group above and beyond the change in control group.
- Assumption: parallel trends
  - Changes in vote of readers of non-switching papers roughly the same as changes that readers of switching papers would have been if they read non-switching papers.
  - · Threat to inference: non-parallel trends.

### Difference-in-differences in R

```
newspapers |>
mutate(
    vote_change = vote_lab_97 - vote_lab_92,
    to_labour = if_else(to_labour == 1, "switched", "unswitched")
) |>
group_by(to_labour) |>
summarize(avg_change = mean(vote_change)) |>
pivot_wider(
    names_from = to_labour,
    values_from = avg_change
) |>
mutate(DID = switched - unswitched)
```

```
## # A tibble: 1 x 3
## switched unswitched DID
## <dbl> <dbl> <dbl>
## 1 0.190 0.110 0.0796
```

- 1. Cross-sectional comparison
  - · Compare treated units with control units after treatment

- · Compare treated units with control units after treatment
- Assumption: treated and controls units are comparable

- · Compare treated units with control units after treatment
- Assumption: treated and controls units are comparable
- Possible confounding

- · Compare treated units with control units after treatment
- Assumption: treated and controls units are comparable
- Possible confounding
- 2. Before-and-after comparison

- · Compare treated units with control units after treatment
- · Assumption: treated and controls units are comparable
- Possible confounding
- 2. Before-and-after comparison
  - · Compare the same units before and after treatment

#### 1. Cross-sectional comparison

- · Compare treated units with control units after treatment
- · Assumption: treated and controls units are comparable
- Possible confounding

#### 2. Before-and-after comparison

- · Compare the same units before and after treatment
- Assumption: no time-varying confounding

#### 1. Cross-sectional comparison

- · Compare treated units with control units after treatment
- · Assumption: treated and controls units are comparable
- Possible confounding

#### 2. Before-and-after comparison

- · Compare the same units before and after treatment
- Assumption: no time-varying confounding

#### 1. Cross-sectional comparison

- · Compare treated units with control units after treatment
- · Assumption: treated and controls units are comparable
- Possible confounding

#### 2. Before-and-after comparison

- · Compare the same units before and after treatment
- Assumption: no time-varying confounding

#### 3. Differences-in-differences

• Assumption: parallel trends assumptions

#### 1. Cross-sectional comparison

- · Compare treated units with control units after treatment
- · Assumption: treated and controls units are comparable
- Possible confounding

#### 2. Before-and-after comparison

- · Compare the same units before and after treatment
- · Assumption: no time-varying confounding

- Assumption: parallel trends assumptions
- Under this assumption, it accounts for unit-specific and time-varying confounding.

#### 1. Cross-sectional comparison

- · Compare treated units with control units after treatment
- · Assumption: treated and controls units are comparable
- Possible confounding

#### 2. Before-and-after comparison

- · Compare the same units before and after treatment
- · Assumption: no time-varying confounding

- Assumption: parallel trends assumptions
- Under this assumption, it accounts for unit-specific and time-varying confounding.
- All rely on assumptions that can't be verified to handle confounding.

#### 1. Cross-sectional comparison

- · Compare treated units with control units after treatment
- · Assumption: treated and controls units are comparable
- Possible confounding

#### 2. Before-and-after comparison

- · Compare the same units before and after treatment
- Assumption: no time-varying confounding

- Assumption: parallel trends assumptions
- Under this assumption, it accounts for unit-specific and time-varying confounding.
- All rely on assumptions that can't be verified to handle confounding.
- RCTs handle confounding by design.

