Gov 50: 10. Survey
Sampling

Matthew Blackwell



1. Proportion tables

2. Measurement

2/27



1] Proportion tables



CCES Data

library(gov50data)
cces_2020

## # A tibble: 51,551 x 6

#it gender race educ pid3 turnout_self pres_vote
it <fct> <fct> <fct> <fct> <dbl> <fct>
## 1 Male White 2-year Repu~ 1 Donald J~
## 2 Female White Post-grad Demo~ NA <NA>
## 3 Female White 4-year Inde~ 1 Joe Bide~
## 4 Female White 4-year Demo~ 1 Joe Bide~
## 5 Male White 4-year Inde~ 1 Other
## 6 Male White Some college Repu~ 1 Donald J~
## 7 Male Black Some college Not ~ NA <NA>
## 8 Female White Some college Inde~ 1 Donald J~
## 9 Female White High school gr~ Repu~ 1 Donald J~
## 10 Female White 4-year Demo~ 1 Joe Bide~

## # i 51,541 more rows
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summarizing

cces_2020 |>
group_by(pres_vote) |[>
summarize(n = n()) |>
mutate(prop = n / sum(n))

## # A tibble: 7 x 3

#it pres_vote n prop
##t <fct> <int> <db1l>
## 1 Joe Biden (Democrat) 26188 0.508
## 2 Donald J. Trump (Republican) 17702 0.343
## 3 Other 1458 0.0283
## 4 I did not vote in this race 100 0.00194
## 5 I did not vote 13 0.000252
## 6 Not sure 190 0.00369
##t 7 <NA> 5900 0.114
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Another approach

cces_2020 |>

group_by(pres_vote) |[>
summarize(prop = n() / nrow(cces_2020))

## # A tibble: 7 x 2

H#t pres_vote prop
## <fct> <dbl>
## 1 Joe Biden (Democrat) 0.508
## 2 Donald J. Trump (Republican) 0.343
## 3 Other 0.0283
## 4 I did not vote in this race 0.00194
## 5 I did not vote 0.000252
## 6 Not sure 0.00369
#i#t 7 <NA> 0.114
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Another approach

cces_2020 |>

group_by(pres_vote) |[>
summarize(prop = n() / nrow(cces_2020))

## # A tibble: 7 x 2

H#t pres_vote prop
## <fct> <dbl>
## 1 Joe Biden (Democrat) 0.508
## 2 Donald J. Trump (Republican) 0.343
## 3 Other 0.0283
## 4 I did not vote in this race 0.00194
## 5 I did not vote 0.000252
## 6 Not sure 0.00369
#i#t 7 <NA> 0.114

Doesn’t work if you have filtered the data in any way during the pipe
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Multiple grouping variables

What happens with multiple grouping variables

vote_by_party <- cces_2020 |[>
filter(pres_vote %in% c("Joe Biden (Democrat)",
"Donald J. Trump (Republican)")) [>
mutate(pres_vote = if_else(pres_vote == "Joe Biden (Democrat)",
"Biden", "Trump")) |[>

group_by(pid3, pres_vote) |>
summarize(n = n()) |>
mutate(prop = n / sum(n)) |[>
select(-n)

vote_by_party
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pres_vote

## # A tibble: 10 x 3
## # Groups: pid3 [5]
#it pid3

## <fct> <chr>
## 1 Democrat Biden
## 2 Democrat Trump
## 3 Republican Biden
## 4 Republican Trump
## 5 Independent Biden
## 6 Independent Trump
## 7 Other Biden
## 8 Other Trump
## 9 Not sure Biden
## 10 Not sure Trump

[l ol ool oo oMo Mool

prop
<dbl>
.968
.0319
.0712
.929
.571
.429
.487
.513
.599
. 401
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## # A tibble: 10 x 3
## # Groups: pid3 [5]

#it pid3 pres_vote prop
#it <fct> <chr> <db1>
## 1 Democrat Biden 0.968
## 2 Democrat Trump 0.0319
## 3 Republican Biden 0.0712
## 4 Republican Trump 0.929
## 5 Independent Biden 0.571
## 6 Independent Trump 0.429
## 7 Other Biden 0.487
## 8 Other Trump 0.513
## 9 Not sure Biden 0.599
## 10 Not sure Trump 0.401

With multiple grouping variables, summarize( ) drops the last one.
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Visualizing the cross-tab

We can visualize this using the fill aesthetic and position="dodge":

ggplot(vote_by_party,
aes(x = pid3, y = prop, fill = pres_vote)) +

geom_col(position = "dodge") +
scale_fill_manual(values = c(Biden = "steelbluel", Trump = "indianred
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Pivoting to create cross-tab

cces_2020 |>
filter(pres_vote %in% c("Joe Biden (Democrat)",
"Donald J. Trump (Republican)")) [>
mutate(pres_vote = if_else(pres_vote == "Joe Biden (Democrat)",
"Biden", "Trump")) |>
group_by(pid3, pres_vote) |[>
summarize(n = n()) |[>

mutate(prop = n / sum(n)) [>
select(-n) |>
pivot_wider(
names_from = pid3,
values_from = prop

)




##
#H#
##
##
#H#

pres_vote Democrat Republican Independent Other

# A tibble: 2 x 6
<chr> <db1l>

1 Biden 0.968

2 Trump 0.0319

<dbl>
0.0712
0.929

<dbl> <dbl>
0.571 0.487
0.429 0.513

“Not sure”
<dbl>
0.599
0.401
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What if we want row proportions?

Switch the grouping variables to switch denominator:

cces_2020 |>
filter(pres_vote %in% c("Joe Biden (Democrat)",
"Donald J. Trump (Republican)")) |[>
mutate(pres_vote = if_else(pres_vote == "Joe Biden (Democrat)",
"Biden", "Trump")) |>
group_by(pres_vote, pid3) |[>

summarize(n = n()) |>
mutate(prop = n / sum(n)) [>
select(-n) |>
pivot_wider(
names_from = pid3,
values_from = prop

)




#H#
##
##
H#
##
#H#
#H#

#
#

1
2
#

A tibble: 2 x 6

Groups: pres_vote [2]

pres_vote Democrat Republican Independent Other
<chr> <db1l> <dbl> <dbl> <dbl>
Biden 0.674 0.0327 0.252 0.0281
Trump 0.0328 0.631 0.280 0.0437

i 1 more variable: “Not sure” <dbl>
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Proportion of all observations

If we want the proportion of all rows, drop all groups
cces_2020 |>
filter(pres_vote %in% c("Joe Biden (Democrat)",
"Donald J. Trump (Republican)")) |[>
mutate(pres_vote = if_else(pres_vote == "Joe Biden (Democrat)",
"Biden", "Trump")) |>
group_by(pid3, pres_vote) |[>

summarize(n = n(), .groups = "drop") |>

mutate(prop

select(-n) |>

pivot_wider(
names_from = pid3,
values_from = prop

)

n / sum(n)) |>




##
##
H#
##
##
#H#

# A tibble: 2 x 6

pres_vote Democrat Republican Independent Other

<chr> <db1l>
1 Biden 0.402
2 Trump 0.0132

# 1 1 more variable:

<dbl>
0.0195
0.254
“Not sure”

<dbl>

<dbl> <dbl>
0.150 0.0167
0.113 0.0176
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2] Measurement



Where does data come from?

+ Social science is about developing and testing causal theories:
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Where does data come from?

+ Social science is about developing and testing causal theories:

+ Does minimum wage change levels of employment?
+ Does outgroup contact influence views on immigration?

+ Theories are made up of concepts:

+ Minimum wage, level of employment, outgroup contact, views on
immigration.
+ We took these for granted when talking about causality.

+ Need operational definition to concretely measure these concepts
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Concepts vary in how observable they are

Kinds of measurement arranged by how direct we can measure them:

Observable in the world Observable by survey Not directly observable

+ Minimum wage laws
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Concepts vary in how observable they are

Kinds of measurement arranged by how direct we can measure them:

Observable in the world Observable by survey

Not directly observable

+ Minimum wage laws + Age of a person + A person’s ideology

- Sensor - Employment status - Levels of
measurements . Presidential democracy

+ Election results approval - Extent of

gerrymandering
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+ Concept: presidential approval.
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+ Concept: presidential approval.
+ Conceptual definition:

- Extent to which US adults support the actions and policies of the current
US president.

+ Operational definition:

+ “On a scale from 1to 5, where 1is least supportive and 5 is more
supportive, how much would you say you support the job that Joe Biden
is doing as president?”
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Measurement error

Table 1
Response to citizenship question across two-waves of CCES panel.

Response in 2010 Response in 2012  Number of respondents  Percentage

Citizen Citizen 18,737 99.25
Citizen Non-Citizen 20 0.11
Non-Citizen Citizen 36 0.19
Non-Citizen Non-Citizen 85 0.45

+ Measurement error: chance variation in our measurements.
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Measurement error

Table 1
Response to citizenship question across two-waves of CCES panel.

Response in 2010 Response in 2012  Number of respondents  Percentage

Citizen Citizen 18,737 99.25
Citizen Non-Citizen 20 0.11
Non-Citizen Citizen 36 0.19
Non-Citizen Non-Citizen 85 0.45

+ Measurement error: chance variation in our measurements.

« individual measurement = exact value + chance error
« chance errors tend to cancel out when we take averages.
- why? often data entry errors or faulty memories.
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w1l VZW Wi-Fi & 18:23 ° 3 33%m
& gop.com

Official Presidential
Job Performance
Poll

-

. How would you rate President
Trump's job performance so far?
Great
Good
Okay
O other

N

. (Optional) Please explain why
you selected your response.

- Bias: systematic errors for all
units in the same direction.

« individual measurement =
exact value + bias + chance
error.

- “What did you eat yesterday?”
~~ underreporting
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- Literary Digest predicted elections using mail-in polls.
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1936 Literary Digest Poll

The Literary Digest

NEW YORK OCTOBER 31, 1936

o
Topics oj the day

returned and let the people of the Nation

LANDON, 1,293,669; ROOSEVELT, 972897 (... uiiiinl sl o scurscy.
- So far, we have been right in every Poll.

Final Returns in The Digest's Poll of Ten Million Voters Wil we be right in the current Pall? That,
as Mrs. Roasevelt said eoncerning the Presi-

g dent’s reckeclion, is in the ‘lap of the gods.
' “We never make any claims before elcc
tion but we respeetfully rfer you to the
. of the maet anoabed sitirens

W ell, the great battle of the ballots n the  lican National
Poll of ten milion volors, scattered Lroenany Dices
throughout the forty-cight States of the eties, including: “Have {

- Literary Digest predicted elections using mail-in polls.

+ Source of addresses: automobile registrations, phone books, etc.
In 1936, sent out 10 million ballots, over 2.3 million returned.

- George Gallup used only 50,000 respondents.
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FDR’s Vote Share

Literary Digest  43%
George Gallup 56%
Actual Outcome  62%
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FDR’s Vote Share

Literary Digest ~ 43%
George Gallup 56%
Actual Outcome  62%

- Selection bias: ballots skewed toward the wealthy (with cars, phones)

+ Only 1in 4 households had a phone in 1936.
+ Nonresponse bias: respondents differ from nonrespondents.

« ~~ when selection procedure is biased, adding more units won't help!
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1948 Election
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The Polling Disaster

Truman Dewey Thurmond Wallace

Crossley 45 50 2 3
Gallup 44 50 2 4
Roper 38 53 5 4
Actual 50 45 3 2
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The Polling Disaster

Truman Dewey Thurmond Wallace

Crossley 45 50 2 3
Gallup 44 50 2 4
Roper 38 53 5 4
Actual 50 45 3 2

+ Quota sampling: fixed quota of certain respondents for each
interviewer

+ If black women make up 5% of the population, stop interviewing them
once they make up 5% of your sample.

- Sample resembles the population on these characteristics
- Potential unobserved confounding ~~ selection bias

+ Republicans easier to find within quotas (phones, listed addresses)
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Sample surveys

+ Probability sampling to ensure representativeness
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Sample surveys

+ Probability sampling to ensure representativeness

+ Definition: every unit in the population has a known, non-zero
probability of being selected into sample.
- Simple random sampling: every unit has an equal selection probability.
« Random digit dialing:
+ Take a particular area code + exchange: 617-495-XXXX.

+ Randomly choose each digit in XXXX to call a particular phone.

+ Every phone in America has an equal chance of being included in
sample.
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Sampling lingo

- Target population: set of people we want to learn about.
+ Ex: people who will vote in the next election.
+ Sampling frame: list of people from which we will actually sample.
+ Frame bias: list of registered voters (frame) might include nonvoters!
- Sample: set of people contacted.
- Respondents: subset of sample that actually responds to the survey.

+ Unit non-response: sample # respondents.
+ Not everyone picks up their phone.

- Completed items: subset of questions that respondents answer.

- Item non-response: refusing to disclose their vote preference.
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Difficulties of sampling

+ Problems of telephone survey

- Cell phones (double counting for the wealthy)
- Caller ID screening (unit non-response)
+ Response rates down to 9%!

+ An alternative: Internet surveys

+ Opt-in panels, respondent-driven sampling ~~ non-probability sampling
- Cheaper, but non-representative

- Digital divide: rich vs. poor, young vs. old

+ Correct for potential sampling bias via statistical methods.
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