# Gov 50: 13. Midterm Review + Prediction

Matthew Blackwell

Harvard University

- 1. Midterm Review: Estimating effects
- 2. Prediction
- 3. Evaluating the predictions

**1**/ Midterm Review: Estimating effects

• Does increasing the minimum wage affect employment?

- Does increasing the minimum wage affect employment?
  - Economists worry that requiring higher wages will lead employers shifting workers from full time to part time.

- Does increasing the minimum wage affect employment?
  - Economists worry that requiring higher wages will lead employers shifting workers from full time to part time.
  - But that's a theoretical concern, can we give empirical evidence?

- Does increasing the minimum wage affect employment?
  - Economists worry that requiring higher wages will lead employers shifting workers from full time to part time.
  - But that's a theoretical concern, can we give empirical evidence?
- Canonical study: Card and Krueger (1994) on minimum wage laws in NJ

- Does increasing the minimum wage affect employment?
  - Economists worry that requiring higher wages will lead employers shifting workers from full time to part time.
  - But that's a theoretical concern, can we give empirical evidence?
- Canonical study: Card and Krueger (1994) on minimum wage laws in NJ
  - In 1992, NJ raised minimum wage from \$4.25/hr to \$5.05/hr.

- Does increasing the minimum wage affect employment?
  - Economists worry that requiring higher wages will lead employers shifting workers from full time to part time.
  - But that's a theoretical concern, can we give empirical evidence?
- Canonical study: Card and Krueger (1994) on minimum wage laws in NJ
  - In 1992, NJ raised minimum wage from \$4.25/hr to \$5.05/hr.
  - What is the effect of this change?

- Does increasing the minimum wage affect employment?
  - Economists worry that requiring higher wages will lead employers shifting workers from full time to part time.
  - But that's a theoretical concern, can we give empirical evidence?
- Canonical study: Card and Krueger (1994) on minimum wage laws in NJ
  - In 1992, NJ raised minimum wage from \$4.25/hr to \$5.05/hr.
  - What is the effect of this change?
- Three research designs:

- Does increasing the minimum wage affect employment?
  - Economists worry that requiring higher wages will lead employers shifting workers from full time to part time.
  - But that's a theoretical concern, can we give empirical evidence?
- Canonical study: Card and Krueger (1994) on minimum wage laws in NJ
  - In 1992, NJ raised minimum wage from \$4.25/hr to \$5.05/hr.
  - What is the effect of this change?
- Three research designs:
  - **Cross-sectional**: Compare NJ employment to neighbor PA employment in 1993 (after).

- Does increasing the minimum wage affect employment?
  - Economists worry that requiring higher wages will lead employers shifting workers from full time to part time.
  - But that's a theoretical concern, can we give empirical evidence?
- Canonical study: Card and Krueger (1994) on minimum wage laws in NJ
  - In 1992, NJ raised minimum wage from \$4.25/hr to \$5.05/hr.
  - What is the effect of this change?
- Three research designs:
  - **Cross-sectional**: Compare NJ employment to neighbor PA employment in 1993 (after).
  - **Before-and-after**: Compare changes in NJ employment bewteen 1991 (before) and 1993 (after).

- Does increasing the minimum wage affect employment?
  - Economists worry that requiring higher wages will lead employers shifting workers from full time to part time.
  - But that's a theoretical concern, can we give empirical evidence?
- Canonical study: Card and Krueger (1994) on minimum wage laws in NJ
  - In 1992, NJ raised minimum wage from \$4.25/hr to \$5.05/hr.
  - What is the effect of this change?
- Three research designs:
  - **Cross-sectional**: Compare NJ employment to neighbor PA employment in 1993 (after).
  - **Before-and-after**: Compare changes in NJ employment bewteen 1991 (before) and 1993 (after).
  - **Difference-in-differences**: Compare changes in NJ employment bewteen 1991 (before) and 1993 (after) to changes in PA in the same period.

- Does increasing the minimum wage affect employment?
  - Economists worry that requiring higher wages will lead employers shifting workers from full time to part time.
  - But that's a theoretical concern, can we give empirical evidence?
- Canonical study: Card and Krueger (1994) on minimum wage laws in NJ
  - In 1992, NJ raised minimum wage from \$4.25/hr to \$5.05/hr.
  - What is the effect of this change?
- Three research designs:
  - **Cross-sectional**: Compare NJ employment to neighbor PA employment in 1993 (after).
  - **Before-and-after**: Compare changes in NJ employment bewteen 1991 (before) and 1993 (after).
  - **Difference-in-differences**: Compare changes in NJ employment bewteen 1991 (before) and 1993 (after) to changes in PA in the same period.
- RCT or observational study?

| Name                    | Description                                                                                                            |
|-------------------------|------------------------------------------------------------------------------------------------------------------------|
| chain                   | Name of the fast-food restaurant chain                                                                                 |
| location                | Location of the restaurant                                                                                             |
| wageBefore              | Average wage at the restaurant before NJ minimum wage<br>law                                                           |
| wageAfter               | Average wage at the restaurant after NJ minimum wage law                                                               |
| fullBefore              | Number of full-time employees before NJ minimum wage<br>law                                                            |
| fullAfter<br>partBefore | Number of full-time employees after NJ minimum wage law<br>Number of full-time employees before NJ minimum wage<br>law |
| partAfter               | Number of full-time employees after NJ minimum wage law                                                                |

### Loading the data

library(tidyverse)
library(qss)
data(minwage)
minwage <- as\_tibble(minwage)
minwage</pre>

| ## # A tibble: 358 x 8                                                            |                      |             |             |             |             |             |             |
|-----------------------------------------------------------------------------------|----------------------|-------------|-------------|-------------|-------------|-------------|-------------|
| ##                                                                                |                      | chain       | location    | wageBefore  | wageAfter   | fullBefore  | fullAfter   |
| ##                                                                                |                      | <chr></chr> | <chr></chr> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> |
| ##                                                                                | 1                    | wendys      | PA          | 5           | 5.25        | 20          | Θ           |
| ##                                                                                | 2                    | wendys      | PA          | 5.5         | 4.75        | 6           | 28          |
| ##                                                                                | 3                    | burge~      | PA          | 5           | 4.75        | 50          | 15          |
| ##                                                                                | 4                    | burge~      | PA          | 5           | 5           | 10          | 26          |
| ##                                                                                | 5                    | kfc         | PA          | 5.25        | 5           | 2           | 3           |
| ##                                                                                | 6                    | kfc         | PA          | 5           | 5           | 2           | 2           |
| ##                                                                                | 7                    | roys        | PA          | 5           | 4.75        | 2.5         | 1           |
| ##                                                                                | 8                    | burge~      | PA          | 5           | 5           | 40          | 9           |
| ##                                                                                | 9                    | burge~      | PA          | 5           | 4.5         | 8           | 7           |
| ##                                                                                | 10                   | burge~      | PA          | 5.5         | 4.75        | 10.5        | 18          |
| ##                                                                                | ## # i 348 more rows |             |             |             |             |             |             |
| <pre>## # i 2 more variables: partBefore <dbl>, partAfter <dbl></dbl></dbl></pre> |                      |             |             |             |             |             |             |

### minwage |> count(location)

| ## | # | A tibble:   | 5 x 2       |  |  |
|----|---|-------------|-------------|--|--|
| ## |   | location    | n           |  |  |
| ## |   | <chr></chr> | <int></int> |  |  |
| ## | 1 | PA          | 67          |  |  |
| ## | 2 | centralNJ   | 45          |  |  |
| ## | 3 | northNJ     | 146         |  |  |
| ## | 4 | shoreNJ     | 33          |  |  |
| ## | 5 | southNJ     | 67          |  |  |

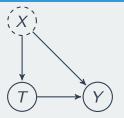
```
minwage <- minwage |>
  mutate(
    state = if_else(location == "PA", "PA", "NJ"), ## PA is control
    full_prop_after = fullAfter / (fullAfter + partAfter) ## proportion ful
  )
```

### **Cross-sectional estimate**

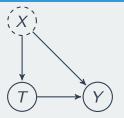
```
ate_cs <- minwage |>
group_by(state) |>
summarize(full_mean = mean(full_prop_after)) |>
pivot_wider(
    names_from = state,
    values_from = full_mean
) |>
mutate(ATE = NJ - PA)
ate_cs
```

## # A tibble: 1 x 3
## NJ PA ATE
## <dbl> <dbl> <dbl>
## 1 0.320 0.272 0.0481

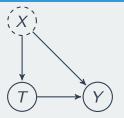
**Interpretation:** The minimum wage law increased the percent of full-time employment by 4.81 percentage points if the cross sectional assumptions hold.



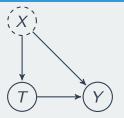
• Could there be **confounders** between having a minimum wage law at \$5.05 and employment?



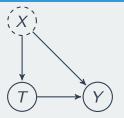
- Could there be **confounders** between having a minimum wage law at \$5.05 and employment?
  - A confounder is a pre-treatment variable that affects both treatment and the outcome.



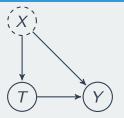
- Could there be **confounders** between having a minimum wage law at \$5.05 and employment?
  - A confounder is a pre-treatment variable that affects both treatment and the outcome.
- One possibility: different chain types.



- Could there be **confounders** between having a minimum wage law at \$5.05 and employment?
  - A confounder is a pre-treatment variable that affects both treatment and the outcome.
- One possibility: different chain types.
  - Imagine if Burger King requires fewer workers to operate than other chains and if for historical reasons there are more BKs in PA than in NJ.



- Could there be **confounders** between having a minimum wage law at \$5.05 and employment?
  - A confounder is a pre-treatment variable that affects both treatment and the outcome.
- One possibility: different chain types.
  - Imagine if Burger King requires fewer workers to operate than other chains and if for historical reasons there are more BKs in PA than in NJ.
  - Then the difference we see in employment might be due to the differece in BKs rather than the MW law.



- Could there be **confounders** between having a minimum wage law at \$5.05 and employment?
  - A confounder is a pre-treatment variable that affects both treatment and the outcome.
- One possibility: different chain types.
  - Imagine if Burger King requires fewer workers to operate than other chains and if for historical reasons there are more BKs in PA than in NJ.
  - Then the difference we see in employment might be due to the differece in BKs rather than the MW law.
  - We can check this by comparing chain distribution across states.

#### **Balance of chains across states**

```
minwage |>
group_by(state, chain) |>
summarize(n = n(), .groups = "drop_last") |>
mutate(prop = n / sum(n)) |>
pivot_wider(
    id_cols = chain,
    names_from = state,
    values_from = prop
)
```

| ## | # | A tibble: 4 | + x 3       |             |
|----|---|-------------|-------------|-------------|
| ## |   | chain       | NJ          | PA          |
| ## |   | <chr></chr> | <dbl></dbl> | <dbl></dbl> |
| ## | 1 | burgerking  | 0.405       | 0.463       |
| ## | 2 | kfc         | 0.223       | 0.149       |
| ## | 3 | roys        | 0.251       | 0.224       |
| ## | 4 | wendys      | 0.120       | 0.164       |

Some differences here: more BK in PA and more KFC in NJ. What to do? We can perform **statistical control** by estimating ATEs within groups.

```
minwage |>
group_by(state, chain) |>
summarize(full_mean = mean(full_prop_after)) |>
pivot_wider(
    names_from = state,
    values_from = full_mean
) |>
mutate(ATE = NJ - PA)
```

| ## | # | A tibble: 4 | ÷х4         |             |             |
|----|---|-------------|-------------|-------------|-------------|
| ## |   | chain       | NJ          | PA          | ATE         |
| ## |   | <chr></chr> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> |
| ## | 1 | burgerking  | 0.358       | 0.321       | 0.0364      |
| ## | 2 | kfc         | 0.328       | 0.236       | 0.0918      |
| ## | 3 | roys        | 0.283       | 0.213       | 0.0697      |
| ## | 4 | wendys      | 0.260       | 0.248       | 0.0117      |

• Maybe there are difference between NJ and PA that we can't observe.

- Maybe there are difference between NJ and PA that we can't observe.
  - Called unmeasured confounding

- Maybe there are difference between NJ and PA that we can't observe.
  - Called unmeasured confounding
- Before and after design compares NJ before the law to after the law.

- Maybe there are difference between NJ and PA that we can't observe.
  - Called unmeasured confounding
- Before and after design compares NJ before the law to after the law.
  - Anything fixed about NJ cannot be causing the the differences.

```
minwage <- minwage |>
  mutate(full_prop_before = fullBefore / (fullBefore + partBefore))
minwage |>
  filter(state == "NJ") |>
  summarize(ATE = mean(full_prop_after) - mean(full_prop_before))
```

```
## # A tibble: 1 x 1
## ATE
## <dbl>
## 1 0.0239
```

**Interpretation**: we estimate the MW law increase the full-time employment percentage by 2.39% if there are no **time-varying confounders**.

• Before and after designs could be affected by time-varying confounders.

- Before and after designs could be affected by time-varying confounders.
- If the whole US economy is shifting to full time employment due to a good economy, then it's not the MW law that is driving things.

- Before and after designs could be affected by time-varying confounders.
- If the whole US economy is shifting to full time employment due to a good economy, then it's not the MW law that is driving things.
- We can account for trends that are affecting all units by comparing the trends in the treated group to the trends in the control group.

### **Difference-in-differences estimate**

```
minwage |>
group_by(state) |>
summarize(trend = mean(full_prop_after) - mean(full_prop_before)) |>
pivot_wider(
    names_from = state,
    values_from = trend
) |>
mutate(DID = NJ - PA)
```

## # A tibble: 1 x 3
## NJ PA DID
## <dbl> <dbl> <dbl>
## 1 0.0239 -0.0377 0.0616

**Interpretation**: minimum wage laws increased percent full-time in NJ by 6.16 percentage points if trends in PA are a good proxy for trends in NJ if it didn't enact a MW law.

## 2/ Prediction





• 2016 election popular vote:



- 2016 election popular vote:
  - Clinton: 65,853,516 (48.2%)



- 2016 election popular vote:
  - Clinton: 65,853,516 (48.2%)
  - Trump: 62,984,825 (46.1%)



- 2016 election popular vote:
  - Clinton: 65,853,516 (48.2%)
  - Trump: 62,984,825 (46.1%)
- Why did Trump win? Electoral college



- 2016 election popular vote:
  - Clinton: 65,853,516 (48.2%)
  - Trump: 62,984,825 (46.1%)
- Why did Trump win? Electoral college
  - Trump: 304, Clinton: 227



- 2016 election popular vote:
  - Clinton: 65,853,516 (48.2%)
  - Trump: 62,984,825 (46.1%)
- Why did Trump win? Electoral college
  - Trump: 304, Clinton: 227
- Election determined by 77,744 votes (margins in WI, MI, and PA)



- 2016 election popular vote:
  - Clinton: 65,853,516 (48.2%)
  - Trump: 62,984,825 (46.1%)
- Why did Trump win? Electoral college
  - Trump: 304, Clinton: 227
- Election determined by 77,744 votes (margins in WI, MI, and PA)
  - 0.056% of the electorate (~136 million)



• Electoral college system



- Electoral college system
  - Must win an absolute majority of 538 electoral votes



- Electoral college system
  - Must win an absolute majority of 538 electoral votes
  - 538 = 435 (House of Representatives) + 100 (Senators) + 3 (DC)



- Electoral college system
  - Must win an absolute majority of 538 electoral votes
  - 538 = 435 (House of Representatives) + 100 (Senators) + 3 (DC)
  - Must win at least 270 votes



- Electoral college system
  - Must win an absolute majority of 538 electoral votes
  - 538 = 435 (House of Representatives) + 100 (Senators) + 3 (DC)
  - Must win at least 270 votes
  - nobody wins an absolute majority  $\rightsquigarrow$  House vote



- Electoral college system
  - Must win an absolute majority of 538 electoral votes
  - 538 = 435 (House of Representatives) + 100 (Senators) + 3 (DC)
  - Must win at least 270 votes
  - nobody wins an absolute majority  $\rightsquigarrow$  House vote
- Must predict winner of each state

• Predict state-level support for each candidate using polls

- Predict state-level support for each candidate using polls
- · Allocate electoral college votes of that state to its predicted winner

- Predict state-level support for each candidate using polls
- · Allocate electoral college votes of that state to its predicted winner
- Aggregate EC votes across states to determine the predicted winner

- Predict state-level support for each candidate using polls
- · Allocate electoral college votes of that state to its predicted winner
- Aggregate EC votes across states to determine the predicted winner
- Coding strategy:

- Predict state-level support for each candidate using polls
- · Allocate electoral college votes of that state to its predicted winner
- Aggregate EC votes across states to determine the predicted winner
- Coding strategy:
  - 1. For each state, subset to polls within that state.

- Predict state-level support for each candidate using polls
- · Allocate electoral college votes of that state to its predicted winner
- Aggregate EC votes across states to determine the predicted winner
- Coding strategy:
  - 1. For each state, subset to polls within that state.
  - 2. Further subset the latest polls

- Predict state-level support for each candidate using polls
- · Allocate electoral college votes of that state to its predicted winner
- Aggregate EC votes across states to determine the predicted winner
- Coding strategy:
  - 1. For each state, subset to polls within that state.
  - 2. Further subset the latest polls
  - 3. Average the latest polls to estimate support for each candidate

- Predict state-level support for each candidate using polls
- · Allocate electoral college votes of that state to its predicted winner
- Aggregate EC votes across states to determine the predicted winner
- Coding strategy:
  - 1. For each state, subset to polls within that state.
  - 2. Further subset the latest polls
  - 3. Average the latest polls to estimate support for each candidate
  - 4. Allocate the electoral votes to the candidate who has greatest support

- Predict state-level support for each candidate using polls
- · Allocate electoral college votes of that state to its predicted winner
- Aggregate EC votes across states to determine the predicted winner
- Coding strategy:
  - 1. For each state, subset to polls within that state.
  - 2. Further subset the latest polls
  - 3. Average the latest polls to estimate support for each candidate
  - 4. Allocate the electoral votes to the candidate who has greatest support
  - 5. Repeat this for all states and aggregate the electoral votes

# 2020 polling prediction

### Election data: pres20

| Name  | Description                                     |
|-------|-------------------------------------------------|
| state | abbreviated name of state                       |
| biden | Biden's vote share (percentage)                 |
| trump | Trump's vote share (percentage)                 |
| ev    | number of electoral college votes for the state |

Polling data polls20:

| Name                   | Description                                      |
|------------------------|--------------------------------------------------|
| state                  | state in which poll was conducted                |
| end_date               | end date the period when poll was conducted      |
| daysleft               | number of days between end date and election day |
| pollster               | name of organization conducting poll             |
| <pre>sample_size</pre> | name of organization conducting poll             |
| biden                  | predicted support for Biden (percentage)         |
| trump                  | predicted support for Trump (percentage)         |

#### library(gov50data) glimpse(polls20)

| ## | Rows: 2,445               |                                                                 |  |  |  |  |  |
|----|---------------------------|-----------------------------------------------------------------|--|--|--|--|--|
| ## | # Columns: 7              |                                                                 |  |  |  |  |  |
| ## | <pre>\$ end_date</pre>    | <pre><date> 2020-11-02, 2020-11-02, 2020-11-02, 2~</date></pre> |  |  |  |  |  |
| ## | \$ state                  | <chr> "FL", "PA", "FL", "FL", "NV", "GA", "S~</chr>             |  |  |  |  |  |
| ## | <pre>\$ days_left</pre>   | <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,</dbl>              |  |  |  |  |  |
| ## | \$ pollster               | <chr> "The Political Matrix/The Listener Gro~</chr>             |  |  |  |  |  |
| ## | <pre>\$ sample_size</pre> | <dbl> 966, 499, 400, 1054, 1024, 1041, 817, ~</dbl>             |  |  |  |  |  |
| ## | \$ biden                  | <dbl> 44.2, 48.4, 47.0, 47.3, 48.4, 45.4, 39~</dbl>             |  |  |  |  |  |
| ## | \$ trump                  | <dbl> 48.0, 49.2, 48.2, 49.4, 49.1, 49.7, 51~</dbl>             |  |  |  |  |  |

## Easy to iterate with tidyverse

```
poll_pred <- polls20 |>
  group_by(state) |>
  filter(days_left == min(days_left)) |>
  summarize(margin_pred = mean(biden - trump))
poll_pred
```

| ## | # A tibble: 51 x 2      |
|----|-------------------------|
| ## | state margin_pred       |
| ## | <chr> <dbl></dbl></chr> |
| ## | 1 AK -9                 |
| ## | 2 AL -26                |
| ## | 3 AR -23                |
| ## | 4 AZ 4.25               |
| ## | 5 CA 26                 |
| ## | 6 CO 11                 |
| ## | 7 CT 22                 |
| ## | 8 DC 89                 |
| ## | 9 DE 22                 |
| ## | 10 FL 0.0800            |
| ## | # i 41 more rows        |

**3/** Evaluating the predictions

## **Polling errors**

#### Prediction error = actual outcome - predicted outcome

```
poll_pred <- poll_pred |>
    left_join(pres20) |>
    mutate(margin = biden - trump) |>
    mutate(errors = margin - margin_pred)
poll_pred
```

| ## | # / | A tibb      | le: 51 x 8  |             |             |             |             |             |             |
|----|-----|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| ## |     | state       | margin_pred | ev          | biden       | trump       | other       | margin      | errors      |
| ## |     | <chr></chr> | <dbl></dbl> |
| ## | 1   | AK          | -9          | 3           | 42.8        | 52.8        | 0.732       | -10.1       | -1.06       |
| ## | 2   | AL          | -26         | 9           | 36.6        | 62.0        | 0.699       | -25.5       | 0.538       |
| ## | 3   | AR          | -23         | 6           | 34.8        | 62.4        | 0.257       | -27.6       | -4.62       |
| ## | 4   | AZ          | 4.25        | 11          | 49.4        | 49.1        | 0.263       | 0.309       | -3.94       |
| ## | 5   | CA          | 26          | 55          | 63.5        | 34.3        | 0.244       | 29.2        | 3.16        |
| ## | 6   | CO          | 11          | 9           | 55.0        | 41.6        | 0.161       | 13.4        | 2.41        |
| ## | 7   | СТ          | 22          | 7           | 59.3        | 39.2        | 0.129       | 20.1        | -1.93       |
| ## | 8   | DC          | 89          | 3           | 92.1        | 5.40        | 0.491       | 86.8        | -2.25       |
| ## | 9   | DE          | 22          | 3           | 58.7        | 39.8        | 0.0780      | 19.0        | -3.03       |
| ## | 10  | FL          | 0.0800      | 29          | 47.9        | 51.2        | 0.0835      | -3.36       | -3.44       |
| ## | # : | i 41 m      | ore rows    |             |             |             |             |             |             |

Bias: average prediction error

mean(poll\_pred\$errors)

## [1] -3.98

### Bias: average prediction error

mean(poll\_pred\$errors)

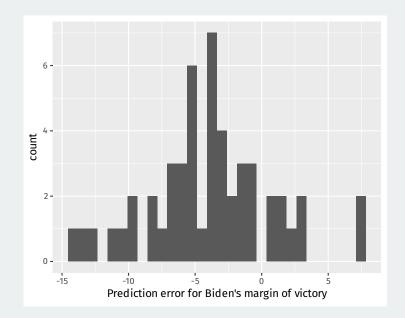
## [1] -3.98

#### Root mean-square error: average magnitude of the prediction error

sqrt(mean(poll\_pred\$errors^2))

## [1] 6.07

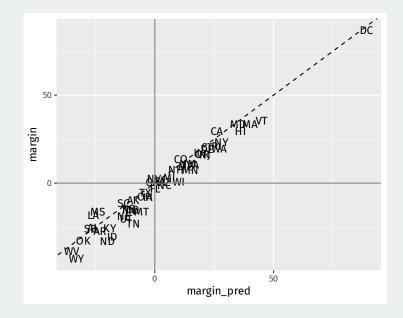
```
ggplot(poll_pred, aes(x = errors)) +
geom_histogram() +
labs(
    x = "Prediction error for Biden's margin of victory"
)
```



Sometimes we want plot text labels instead of point and we use geom\_text and the label aesthetic:

```
## merge the actual results
ggplot(poll_pred, aes(x = margin_pred, y = margin)) +
geom_text(aes(label = state)) +
geom_abline(xintercept = 0, slope = 1, linetype = 2) +
geom_hline(yintercept = 0, color = "grey50") +
geom vline(xintercept = 0, color = "grey50")
```

# Comparing polls to outcome



### Election prediction: need to predict winner in each state:

```
poll_pred |>
  filter(margin > 0) |>
  summarize(sum(ev)) |> pull()
```

## [1] 306

poll\_pred |>
 filter(margin\_pred > 0) |>
 summarize(sum(ev)) |> pull()

### Election prediction: need to predict winner in each state:

```
poll_pred |>
  filter(margin > 0) |>
  summarize(sum(ev)) |> pull()
```

## [1] 306

```
poll_pred |>
  filter(margin_pred > 0) |>
  summarize(sum(ev)) |> pull()
```

#### ## [1] 328

• Prediction of binary outcome variable = classification problem

### Election prediction: need to predict winner in each state:

```
poll_pred |>
  filter(margin > 0) |>
  summarize(sum(ev)) |> pull()
```

## [1] 306

```
poll_pred |>
  filter(margin_pred > 0) |>
  summarize(sum(ev)) |> pull()
```

- Prediction of binary outcome variable = classification problem
- Wrong prediction ~> misclassification

### Election prediction: need to predict winner in each state:

```
poll_pred |>
  filter(margin > 0) |>
  summarize(sum(ev)) |> pull()
```

## [1] 306

poll\_pred |>
 filter(margin\_pred > 0) |>
 summarize(sum(ev)) |> pull()

- Prediction of binary outcome variable = classification problem
- Wrong prediction  $\leadsto$  misclassification
  - 1. true positive: predict Trump wins when he actually wins.

### Election prediction: need to predict winner in each state:

```
poll_pred |>
  filter(margin > 0) |>
  summarize(sum(ev)) |> pull()
```

## [1] 306

poll\_pred |>
 filter(margin\_pred > 0) |>
 summarize(sum(ev)) |> pull()

- Prediction of binary outcome variable = classification problem
- Wrong prediction  $\leadsto$  misclassification
  - 1. **true positive**: predict Trump wins when he actually wins.
  - 2. false positive: predict Trump wins when he actually loses.

### Election prediction: need to predict winner in each state:

```
poll_pred |>
  filter(margin > 0) |>
  summarize(sum(ev)) |> pull()
```

## [1] 306

poll\_pred |>
 filter(margin\_pred > 0) |>
 summarize(sum(ev)) |> pull()

- Prediction of binary outcome variable = classification problem
- Wrong prediction  $\leadsto$  misclassification
  - 1. **true positive**: predict Trump wins when he actually wins.
  - 2. false positive: predict Trump wins when he actually loses.
  - 3. true negative: predict Trump loses when he actually loses.

### Election prediction: need to predict winner in each state:

```
poll_pred |>
  filter(margin > 0) |>
  summarize(sum(ev)) |> pull()
```

## [1] 306

```
poll_pred |>
  filter(margin_pred > 0) |>
  summarize(sum(ev)) |> pull()
```

- Prediction of binary outcome variable = classification problem
- Wrong prediction  $\leadsto$  misclassification
  - 1. **true positive**: predict Trump wins when he actually wins.
  - 2. false positive: predict Trump wins when he actually loses.
  - 3. true negative: predict Trump loses when he actually loses.
  - 4. false negative: predict Trump loses when he actually wins.

### Election prediction: need to predict winner in each state:

```
poll_pred |>
  filter(margin > 0) |>
  summarize(sum(ev)) |> pull()
```

## [1] 306

```
poll_pred |>
  filter(margin_pred > 0) |>
  summarize(sum(ev)) |> pull()
```

- Prediction of binary outcome variable = classification problem
- Wrong prediction  $\leadsto$  misclassification
  - 1. **true positive**: predict Trump wins when he actually wins.
  - 2. false positive: predict Trump wins when he actually loses.
  - 3. true negative: predict Trump loses when he actually loses.
  - 4. false negative: predict Trump loses when he actually wins.
- Sometimes false negatives are more/less important: e.g., civil war.

# **Classification based on polls**

Accuracy: sign() returns 1 for a positive number, -1 for a negative number, and 0 for 0.

poll\_pred |>
 summarize(prop\_correct = mean(sign(margin\_pred) == sign(margin))) |>
 pull()

## [1] 0.922

## **Classification based on polls**

Accuracy: sign() returns 1 for a positive number, -1 for a negative number, and 0 for 0.

poll\_pred |>
 summarize(prop\_correct = mean(sign(margin\_pred) == sign(margin))) |>
 pull()

## [1] 0.922

### Which states did polls call wrong?

poll\_pred |>
 filter(sign(margin\_pred) != sign(margin))

| ## | # | A tib       | ole: 4 x 8  |             |             |             |             |             |             |
|----|---|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| ## |   | state       | margin_pred | ev          | biden       | trump       | other       | margin      | errors      |
| ## |   | <chr></chr> | <dbl></dbl> |
| ## | 1 | FL          | 0.0800      | 29          | 47.9        | 51.2        | 0.0835      | -3.36       | -3.44       |
| ## | 2 | GA          | -1.15       | 16          | 49.5        | 49.2        | 0.0759      | 0.236       | 1.39        |
| ## | 3 | NC          | 3.95        | 15          | 48.6        | 49.9        | 0.296       | -1.35       | -5.30       |
| ## | 4 | NV          | -0.350      | 6           | 50.1        | 47.7        | 0.759       | 2.39        | 2.74        |