Gov 50: 15. Model Fit

Matthew Blackwell

Harvard University

1. Model fit

1/ Model fit

Presidential popularity and the midterms

• Does popularity of the president or recent changes in the economy better predict midterm election outcomes?

Presidential popularity and the midterms

• Does popularity of the president or recent changes in the economy better predict midterm election outcomes?

Name	Description			
year	midterm election year			
president	name of president			
party	Democrat or Republican			
approval	Gallup approval rating at midterms			
rdi_change	% change in real disposable income over the year			
	before midterms			
seat_change	change in the number of House seats for the pres-			
	ident's party			

library(gov50data) midterms

##	## # A tibble: 20 x 6							
##		year	president	party	approval	<pre>seat_change</pre>	rdi_change	
##		<dbl></dbl>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
##	1	1946	Truman	D	33	-55	NA	
##	2	1950	Truman	D	39	-29	8.2	
##	3	1954	Eisenhower	R	61	- 4	1	
##	4	1958	Eisenhower	R	57	-47	1.1	
##	5	1962	Kennedy	D	61	- 4	5	
##	6	1966	Johnson	D	44	-47	5.3	
##	7	1970	Nixon	R	58	-8	6.6	
##	8	1974	Ford	R	54	-43	6.4	
##	9	1978	Carter	D	49	-11	7.7	
##	10	1982	Reagan	R	42	-28	4.8	
##	11	1986	Reagan	R	63	-5	5.1	
##	12	1990	H.W. Bush	R	58	-8	5.6	
##	13	1994	Clinton	D	46	-53	3.9	
##	14	1998	Clinton	D	66	5	5.6	
##	15	2002	W. Bush	R	63	6	2.6	
##	16	2006	W. Bush	R	38	-30	5.7	
##	17	2010	Obama	D	45	-63	3.5	
##	18	2014	Obama	D	40	-13	4.6	
##	19	2018	Trump	R	38	-42	4.1	
##	20	2022	Biden	D	42	NA	-0.003	

fit.app <- lm(seat_change ~ approval, data = midterms)
fit.app</pre>

fit.app <- lm(seat_change ~ approval, data = midterms)
fit.app</pre>

```
##
## Call:
## lm(formula = seat_change ~ approval, data = midterms)
##
## Coefficients:
## (Intercept) approval
## -96.58 1.42
```

fit.app <- lm(seat_change ~ approval, data = midterms)
fit.app</pre>

```
##
## Call:
## lm(formula = seat_change ~ approval, data = midterms)
##
## Coefficients:
## (Intercept) approval
## -96.58 1.42
```

For a one-point increase in presidential approval, the predicted seat change increases by 1.42

fit.rdi <- lm(seat_change ~ rdi_change, data = midterms)
fit.rdi</pre>

fit.rdi <- lm(seat_change ~ rdi_change, data = midterms) fit.rdi</pre>

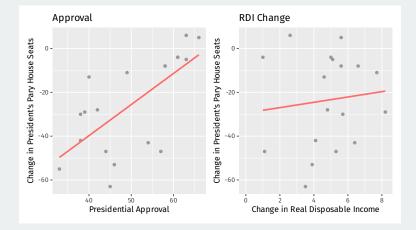
```
##
## Call:
## lm(formula = seat_change ~ rdi_change, data = midterms)
##
## Coefficients:
## (Intercept) rdi_change
## -29.41 1.21
```

fit.rdi <- lm(seat_change ~ rdi_change, data = midterms) fit.rdi

```
##
## Call:
## lm(formula = seat_change ~ rdi_change, data = midterms)
##
## Coefficients:
## (Intercept) rdi_change
## -29.41 1.21
```

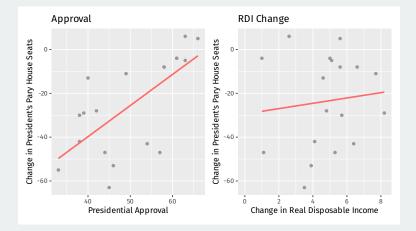
For a one-point increase in the change in real disposable income, the predicted seat change increases by 1.21

Comparing models



• How well do the models "fit the data"?

Comparing models



- How well do the models "fit the data"?
 - How well does the model predict the outcome variable in the data?

Model prediction error:

prediction error =
$$\sum_{i=1}^{n} (actual_i - predicted_i)^2$$

Model prediction error:

prediction error =
$$\sum_{i=1}^{n} (actual_i - predicted_i)^2$$

Prediction error for regression: Sum of squared residuals

$$\mathsf{SSR} = \sum_{i=1}^{n} \left(Y_i - \widehat{Y}_i \right)^2$$

Model prediction error:

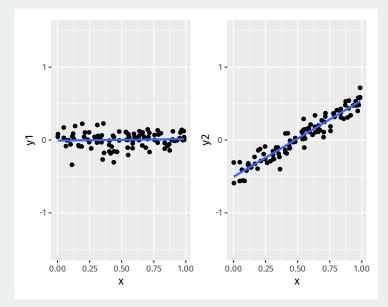
$$prediction error = \sum_{i=1}^{n} (actual_i - predicted_i)^2$$

Prediction error for regression: Sum of squared residuals

$$SSR = \sum_{i=1}^{n} \left(Y_i - \widehat{Y}_i \right)^2$$

Lower SSR is better, right?

These two regression lines have approximately the same SSR:



Benchmarking model fit

Benchmarking our predictions using the proportional reduction in error:

reduction in prediction error using model baseline prediction error

Benchmarking model fit

Benchmarking our predictions using the proportional reduction in error:

reduction in prediction error using model baseline prediction error

Baseline prediction error without a regression is using the mean of Y to predict. This is called the **Total sum of squares**:

$$\mathsf{TSS} = \sum_{i=1}^{n} (Y_i - \overline{Y})^2$$

Benchmarking model fit

Benchmarking our predictions using the proportional reduction in error:

reduction in prediction error using model baseline prediction error

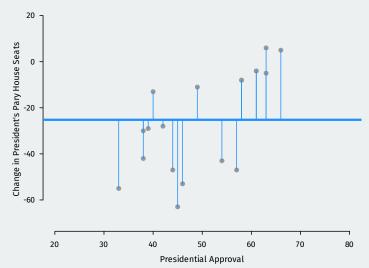
Baseline prediction error without a regression is using the mean of Y to predict. This is called the **Total sum of squares**:

$$\mathsf{TSS} = \sum_{i=1}^{n} (Y_i - \overline{Y})^2$$

Leads to the **coefficient of determination**, R^2 , one summary of LS model fit:

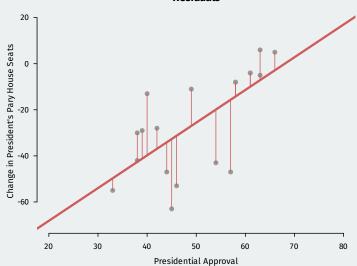
 $R^{2} = \frac{TSS - SSR}{TSS} = \frac{\text{how much smaller LS prediction errors are vs mean}}{\text{prediction error using the mean}}$

Total SS vs SSR



Deviations from the mean

Total SS vs SSR



Residuals

fit.app.sum <- summary(fit.app)
fit.app.sum\$r.squared</pre>

fit.app.sum <- summary(fit.app)
fit.app.sum\$r.squared</pre>

[1] 0.45

fit.app.sum <- summary(fit.app)
fit.app.sum\$r.squared</pre>

[1] 0.45

• Compare to the fit using change in income:

fit.app.sum <- summary(fit.app)
fit.app.sum\$r.squared</pre>

[1] 0.45

• Compare to the fit using change in income:

fit.rdi.sum <- summary(fit.rdi)
fit.rdi.sum\$r.squared</pre>

```
fit.app.sum <- summary(fit.app)
fit.app.sum$r.squared</pre>
```

```
## [1] 0.45
```

• Compare to the fit using change in income:

```
fit.rdi.sum <- summary(fit.rdi)
fit.rdi.sum$r.squared</pre>
```

[1] 0.012

• Which does a better job predicting midterm election outcomes?

Accessing model fit via broom package

We can also access summary statistics like model fit using the glance() function from broom:

library(broom)
glance(fit.app)

```
## # A tibble: 1 x 12
## r.squared adj.r.squared sigma statistic p.value df
## <dbl> <dbl <dbl <dbl > <
```

• Little hard to see what's happening in that example.

- Little hard to see what's happening in that example.
- Let's look at fake variables x and y:

- Little hard to see what's happening in that example.
- Let's look at fake variables x and y:

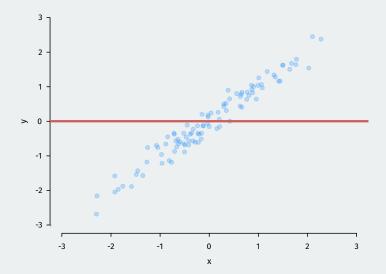
fit.x <- $lm(y \sim x)$

- Little hard to see what's happening in that example.
- Let's look at fake variables x and y:

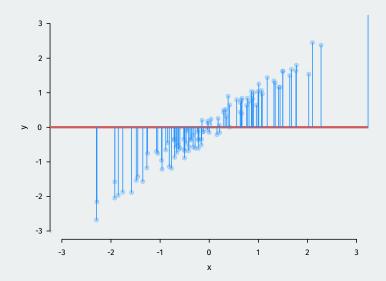
fit.x <- $lm(y \sim x)$

- Very good model fit: $R^2 \approx 0.95$

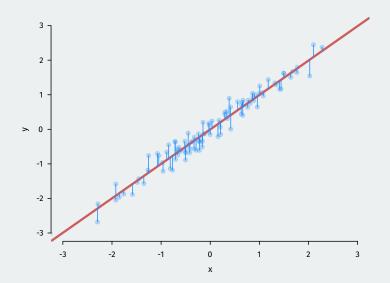
Fake data, better fit



Fake data, better fit

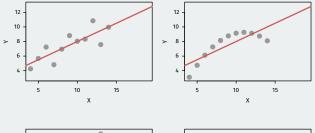


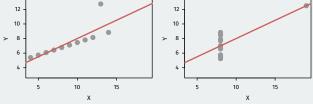
Fake data, better fit



Is R-squared useful?

• Can be very misleading. Each of these samples have the same R^2 even though they are vastly different:





• **In-sample fit**: how well your model predicts the data used to estimate it.

- **In-sample fit**: how well your model predicts the data used to estimate it.
 - R^2 is a measure of in-sample fit.

- **In-sample fit**: how well your model predicts the data used to estimate it.
 - R^2 is a measure of in-sample fit.
- **Out-of-sample fit**: how well your model predicts new data.

- **In-sample fit**: how well your model predicts the data used to estimate it.
 - R^2 is a measure of in-sample fit.
- **Out-of-sample fit**: how well your model predicts new data.
- **Overfitting**: OLS optimizes in-sample fit; may do poorly out of sample.

- **In-sample fit**: how well your model predicts the data used to estimate it.
 - R^2 is a measure of in-sample fit.
- **Out-of-sample fit**: how well your model predicts new data.
- **Overfitting**: OLS optimizes in-sample fit; may do poorly out of sample.
 - Example: predicting winner of Democratic presidential primary with gender of the candidate.

- **In-sample fit**: how well your model predicts the data used to estimate it.
 - R^2 is a measure of in-sample fit.
- **Out-of-sample fit**: how well your model predicts new data.
- **Overfitting**: OLS optimizes in-sample fit; may do poorly out of sample.
 - Example: predicting winner of Democratic presidential primary with gender of the candidate.
 - Until 2016, gender was a **perfect** predictor of who wins the primary.

- **In-sample fit**: how well your model predicts the data used to estimate it.
 - R^2 is a measure of in-sample fit.
- **Out-of-sample fit**: how well your model predicts new data.
- **Overfitting**: OLS optimizes in-sample fit; may do poorly out of sample.
 - Example: predicting winner of Democratic presidential primary with gender of the candidate.
 - Until 2016, gender was a **perfect** predictor of who wins the primary.
 - Prediction for 2016 based on this: Bernie Sanders as Dem. nominee.

- **In-sample fit**: how well your model predicts the data used to estimate it.
 - R^2 is a measure of in-sample fit.
- **Out-of-sample fit**: how well your model predicts new data.
- **Overfitting**: OLS optimizes in-sample fit; may do poorly out of sample.
 - Example: predicting winner of Democratic presidential primary with gender of the candidate.
 - Until 2016, gender was a **perfect** predictor of who wins the primary.
 - Prediction for 2016 based on this: Bernie Sanders as Dem. nominee.
 - Bad out-of-sample prediction due to overfitting!