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1/ Multiple regression



Multiple predictors

What if we want to predict 𝘠 as a function of many variables?

seat_change𝘪 = 𝛼 + 𝛽𝟣approval𝘪 + 𝛽𝟤rdi_change𝘪 + 𝜖𝘪

Why?

• Better predictions (at least in-sample).

• Better interpretation as ceteris paribus relationships:

• 𝛽𝟣 is the relationship between approval and seat_change holding
rdi_change constant.

• Statistical control in a cross-sectional study.
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Multiple regression in R
mult.fit <- lm(seat_change ~ approval + rdi_change,

data = midterms)
mult.fit

##
## Call:
## lm(formula = seat_change ~ approval + rdi_change, data = midterms)
##
## Coefficients:
## (Intercept) approval rdi_change
## -117.23 1.53 3.22

• ̂𝛼 = -117.2: average seat change president has 0% approval and no
change in income levels.

• ̂𝛽𝟣 = 1.53: average increase in seat change for additional percentage
point of approval, holding RDI change fixed

• ̂𝛽𝟤 = 3.217: average increase in seat change for each additional
percentage point increase of RDI, holding approval fixed
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Least squares with multiple regression

• How do we estimate the coefficients?

• The same exact way as before: minimize prediction error!

• Residuals (aka prediction error) with multiple predictors:

𝘠𝘪 − 𝘠𝘪 = seat_change𝘪 − ̂𝛼 − ̂𝛽𝟣approval𝘪 − ̂𝛽𝟤rdi_change𝘪

• Find the coefficients that minimizes the sum of the squared residuals:

SSR =
𝘯

∑
𝘪=𝟣

̂𝜖𝟤
𝘪 = (𝘠𝘪 − ̂𝛼 − ̂𝛽𝟣𝘟𝘪𝟣 − ̂𝛽𝟤𝘟𝘪𝟤)𝟤
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Model fit with multiple predictors

• 𝘙𝟤 mechanically increases when you add a variables to the regression.

• But this could be overfitting!!

• Solution: penalize regression models with more variables.

• Occam’s razor: simpler models are preferred

• Adjusted 𝘙𝟤: lowers regular 𝘙𝟤 for each additional covariate.

• If the added covariates doesn’t help predict, adjusted 𝘙𝟤 goes down!
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Comparing model fits

library(broom)
fit.app <- lm(seat_change ~ approval, data = midterms)
glance(fit.app) |>
select(r.squared, adj.r.squared, sigma)

## # A tibble: 1 x 3
## r.squared adj.r.squared sigma
## <dbl> <dbl> <dbl>
## 1 0.450 0.418 16.9
glance(mult.fit) |>
select(r.squared, adj.r.squared, sigma)

## # A tibble: 1 x 3
## r.squared adj.r.squared sigma
## <dbl> <dbl> <dbl>
## 1 0.468 0.397 16.7
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Predicted values from R

We could plug in values into the equation, but R can do this for us. The
{modelr} package gives some functions that allow us to predictions in a
tidy way:

Let’s use add_predictions() to predict the 2022 results
library(modelr)

midterms |>
filter(year == 2022) |>
add_predictions(mult.fit)

## # A tibble: 1 x 7
## year president party approval seat_change rdi_change
## <dbl> <chr> <chr> <dbl> <dbl> <dbl>
## 1 2022 Biden D 42 NA -0.003
## # i 1 more variable: pred <dbl>
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Predictions from several models

The gather_predictions() will return one row for each model passed to
it with the prediction for that model:
midterms |>
filter(year == 2022) |>
gather_predictions(fit.app, mult.fit)

## # A tibble: 2 x 8
## model year president party approval seat_change
## <chr> <dbl> <chr> <chr> <dbl> <dbl>
## 1 fit.app 2022 Biden D 42 NA
## 2 mult.fit 2022 Biden D 42 NA
## # i 2 more variables: rdi_change <dbl>, pred <dbl>
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Predictions from new data

What about predicted values not in data?
tibble(approval = c(50, 75), rdi_change = 0) |>
gather_predictions(fit.app, mult.fit)

## # A tibble: 4 x 4
## model approval rdi_change pred
## <chr> <dbl> <dbl> <dbl>
## 1 fit.app 50 0 -25.6
## 2 fit.app 75 0 9.92
## 3 mult.fit 50 0 -40.9
## 4 mult.fit 75 0 -2.79
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Predictions from augment()

We can also get predicted values from the augment() function using the
newdata argument:
newdata <- tibble(approval = c(50, 75), rdi_change = 0)

augment(mult.fit, newdata = newdata)

## # A tibble: 2 x 3
## approval rdi_change .fitted
## <dbl> <dbl> <dbl>
## 1 50 0 -40.9
## 2 75 0 -2.79
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2/ Categorical
independent variables



Political effects of gov’t programs

• Progesa: Mexican conditional cash transfer program (CCT) from ~2000

• Welfare $$ given if kids enrolled in schools, get regular check-ups, etc.

• Do these programs have political effects?

• Program had support from most parties.
• Was implemented in a nonpartisan fashion.
• Would the incumbent presidential party be rewarded?
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The data

• Randomized roll-out of the CCT program:

• treatment: receive CCT 21 months before 2000 election
• control: receive CCT 6 months before 2000 election

• Does having CCT longer mobilize voters for incumbent PRI party?

Name Description
treatment early Progresa (1) or late Progresa (0)
pri2000s PRI votes in the 2000 election as a share of adults

in precinct
t2000 turnout in the 2000 election as share of adults in

precinct
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library(qss)
data("progresa", package = "qss")
cct <- as_tibble(progresa) |>
select(treatment, pri2000s, t2000)

cct

## # A tibble: 417 x 3
## treatment pri2000s t2000
## <int> <dbl> <dbl>
## 1 1 40.8 55.8
## 2 1 22.4 31.2
## 3 1 38.9 47.0
## 4 1 31.2 45.0
## 5 0 76.9 100
## 6 0 23.9 37.4
## 7 1 47.3 64.9
## 8 1 21.4 58.1
## 9 1 56.5 71.3
## 10 1 36.6 51.2
## # i 407 more rows
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Difference in means estimates
Does CCT affect turnout?
cct |> group_by(treatment) |>
summarize(t2000 = mean(t2000)) |>
pivot_wider(names_from = treatment, values_from = t2000) |>
mutate(ATE = `1` - `0`)

## # A tibble: 1 x 3
## `0` `1` ATE
## <dbl> <dbl> <dbl>
## 1 63.8 68.1 4.27

Does CCT affect PRI (incumbent) votes?
cct |> group_by(treatment) |>

summarize(pri2000s = mean(pri2000s)) |>
pivot_wider(names_from = treatment, values_from = pri2000s) |>
mutate(ATE = `1` - `0`)

## # A tibble: 1 x 3
## `0` `1` ATE
## <dbl> <dbl> <dbl>
## 1 34.5 38.1 3.62
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Binary independent variables

𝘠𝘪 = 𝛼 + 𝛽𝘟𝘪 + 𝜀𝘪

• When independent variable 𝘟𝘪 is binary:

• Intercept ̂𝛼 is the average outcome in the 𝘟 = 𝟢 group.
• Slope ̂𝛽 is the difference-in-means of 𝘠 between 𝘟 = 𝟣 group and 𝘟 = 𝟢
group.

̂𝛽 = 𝘠 treated − 𝘠 control

• If there are other independent variables, this becomes the
difference-in-means controlling for those covariates.
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Linear regression for experiments

• Under randomization, we can estimate the ATE with regression:
cct |> group_by(treatment) |>
summarize(pri2000s = mean(pri2000s)) |>
pivot_wider(names_from = treatment, values_from = pri2000s) |>
mutate(ATE = `1` - `0`)

## # A tibble: 1 x 3
## `0` `1` ATE
## <dbl> <dbl> <dbl>
## 1 34.5 38.1 3.62
lm(pri2000s ~ treatment, data = cct) |> coef()

## (Intercept) treatment
## 34.49 3.62
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Categorical variables in regression
• We often have categorical variables:

• Race/ethnicity: white, Black, Latino, Asian.
• Partisanship: Democrat, Republican, Independent

• Strategy for including in a regression: create a series of binary variables

Unit Party Democrat Republican Independent
1 Democrat 1 0 0
2 Democrat 1 0 0
3 Independent 0 0 1
4 Republican 0 1 0
⋮ ⋮ ⋮ ⋮ ⋮

• Then include all but one of these binary variables:

turnout𝘪 = 𝛼 + 𝛽𝟣Republican𝘪 + 𝛽𝟤Independent𝘪 + 𝜀𝘪
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Unit Party Democrat Republican Independent
1 Democrat 1 0 0
2 Democrat 1 0 0
3 Independent 0 0 1
4 Republican 0 1 0
⋮ ⋮ ⋮ ⋮ ⋮

• Then include all but one of these binary variables:

turnout𝘪 = 𝛼 + 𝛽𝟣Republican𝘪 + 𝛽𝟤Independent𝘪 + 𝜀𝘪
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Interpreting categorical variables

turnout𝘪 = 𝛼 + 𝛽𝟣Republican𝘪 + 𝛽𝟤Independent𝘪 + 𝜀𝘪

• ̂𝛼: average outcome in the omitted group/baseline (Democrats).

• ̂𝛽 coefficients: average difference between each group and the
baseline.

• ̂𝛽𝟣: average difference in turnout between Republicans and Democrats
• ̂𝛽𝟤: average difference in turnout between Independents and Democrats
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CCES data

library(gov50data)
cces_2020

## # A tibble: 51,551 x 6
## gender race educ pid3 turnout_self pres_vote
## <fct> <fct> <fct> <fct> <dbl> <fct>
## 1 Male White 2-year Repu~ 1 Donald J~
## 2 Female White Post-grad Demo~ NA <NA>
## 3 Female White 4-year Inde~ 1 Joe Bide~
## 4 Female White 4-year Demo~ 1 Joe Bide~
## 5 Male White 4-year Inde~ 1 Other
## 6 Male White Some college Repu~ 1 Donald J~
## 7 Male Black Some college Not ~ NA <NA>
## 8 Female White Some college Inde~ 1 Donald J~
## 9 Female White High school gr~ Repu~ 1 Donald J~
## 10 Female White 4-year Demo~ 1 Joe Bide~
## # i 51,541 more rows
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Categorical variables in the CCES data

turnout_pred <- lm(turnout_self ~ pid3, data = cces_2020)
turnout_pred

##
## Call:
## lm(formula = turnout_self ~ pid3, data = cces_2020)
##
## Coefficients:
## (Intercept) pid3Republican pid3Independent
## 0.9635 -0.0103 -0.0394
## pid3Other pid3Not sure
## -0.0066 -0.3331
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What R does internally with factor variables in lm
cces_2020 |> drop_na(turnout_self, pid3) |> select(pid3) |> pull() |>
head()

## [1] Republican Independent Democrat Independent
## [5] Republican Independent
## 7 Levels: Democrat Republican Independent ... not asked
model.matrix(turnout_pred) |>
head()

## (Intercept) pid3Republican pid3Independent pid3Other
## 1 1 1 0 0
## 3 1 0 1 0
## 4 1 0 0 0
## 5 1 0 1 0
## 6 1 1 0 0
## 8 1 0 1 0
## pid3Not sure
## 1 0
## 3 0
## 4 0
## 5 0
## 6 0
## 8 0
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