Gov 50: 16. Multiple Regression and Interpretation

Matthew Blackwell

Harvard University

Roadmap

- 1. Multiple regression
- 2. Categorical independent variables

1/ Multiple regression

Multiple predictors

What if we want to predict Y as a function of many variables?

$$seat_change_i = \alpha + \beta_1 approval_i + \beta_2 rdi_change_i + \epsilon_i$$

Why?

- Better predictions (at least in-sample).
- Better interpretation as ceteris paribus relationships:
 - β_1 is the relationship between approval and seat_change holding rdi_change constant.
 - Statistical control in a cross-sectional study.

Multiple regression in R

- $\hat{\alpha}=$ -117.2: average seat change president has 0% approval and no change in income levels.
- $\hat{\beta}_1 =$ 1.53: average increase in seat change for additional percentage point of approval, **holding RDI change fixed**
- $\hat{\beta}_2=$ 3.217: average increase in seat change for each additional percentage point increase of RDI, **holding approval fixed**

Least squares with multiple regression

- · How do we estimate the coefficients?
- The same exact way as before: minimize prediction error!
- Residuals (aka prediction error) with multiple predictors:

$$Y_i - \widehat{Y}_i = \texttt{seat_change}_i - \hat{\alpha} - \hat{\beta}_1 \texttt{approval}_i - \hat{\beta}_2 \texttt{rdi_change}_i$$

Find the coefficients that minimizes the sum of the squared residuals:

$$SSR = \sum_{i=1}^{n} \hat{\epsilon}_{i}^{2} = (Y_{i} - \hat{\alpha} - \hat{\beta}_{1} X_{i1} - \hat{\beta}_{2} X_{i2})^{2}$$

Model fit with multiple predictors

- R^2 mechanically increases when you add a variables to the regression.
 - · But this could be overfitting!!
- · Solution: penalize regression models with more variables.
 - · Occam's razor: simpler models are preferred
- Adjusted R^2 : lowers regular R^2 for each additional covariate.
 - If the added covariates doesn't help predict, adjusted R² goes down!

Comparing model fits

```
library(broom)
fit.app <- lm(seat change ~ approval, data = midterms)</pre>
glance(fit.app) |>
 select(r.squared, adj.r.squared, sigma)
## # A tibble: 1 x 3
## r.squared adj.r.squared sigma
##
  <dbl> <dbl> <dbl> <
## 1 0.450
                    0.418 16.9
glance(mult.fit) |>
 select(r.squared, adj.r.squared, sigma)
## # A tibble: 1 x 3
##
   r.squared adj.r.squared sigma
##
       <dbl> <dbl> <dbl>
## 1 0.468 0.397 16.7
```

Predicted values from R

We could plug in values into the equation, but R can do this for us. The {modelr} package gives some functions that allow us to predictions in a tidy way:

Let's use add_predictions() to predict the 2022 results

```
library(modelr)

midterms |>
  filter(year == 2022) |>
  add_predictions(mult.fit)
```

Predictions from several models

The gather_predictions() will return one row for each model passed to it with the prediction for that model:

```
midterms |>
  filter(year == 2022) |>
  gather_predictions(fit.app, mult.fit)
```

Predictions from new data

What about predicted values not in data?

```
tibble(approval = c(50, 75), rdi_change = 0) |>
gather_predictions(fit.app, mult.fit)
```

```
## # A tibble: 4 x 4
##
    model approval rdi_change pred
##
    <chr>
               <fdh>>
                    <fdb> <fdb>
  1 fit.app
                            0 - 25.6
                 50
                            0 9.92
##
  2 fit.app
              75
  3 mult.fit
                 50
                            0 - 40.9
## 4 mult.fit
                            0 - 2.79
                 75
```

Predictions from augment()

We can also get predicted values from the augment() function using the newdata argument:

```
newdata <- tibble(approval = c(50, 75), rdi_change = 0)
augment(mult.fit, newdata = newdata)</pre>
```

```
## # A tibble: 2 x 3
## approval rdi_change .fitted
## <dbl> <dbl> <dbl> 
## 1 50 0 -40.9
## 2 75 0 -2.79
```

2/ Categorical independent variables

Political effects of gov't programs

- Progesa: Mexican conditional cash transfer program (CCT) from ~2000
 - Welfare \$\$ given if kids enrolled in schools, get regular check-ups, etc.
- Do these programs have political effects?
 - Program had support from most parties.
 - Was implemented in a nonpartisan fashion.
 - Would the incumbent presidential party be rewarded?

The data

- Randomized roll-out of the CCT program:
 - treatment: receive CCT 21 months before 2000 election
 - · control: receive CCT 6 months before 2000 election
- Does having CCT longer mobilize voters for incumbent PRI party?

Name	Description
treatment	early Progresa (1) or late Progresa (0)
pri2000s	PRI votes in the 2000 election as a share of adults
	in precinct
t2000	turnout in the 2000 election as share of adults in
	precinct

```
library(qss)
data("progresa", package = "qss")
cct <- as_tibble(progresa) |>
   select(treatment, pri2000s, t2000)
cct
```

```
## # A tibble: 417 x 3
##
     treatment pri2000s t2000
##
        <int> <dbl> <dbl>
##
   1
               40.8 55.8
##
   2
              22.4 31.2
##
   3
              38.9 47.0
##
              31.2 45.0
##
   5
              76.9 100
##
               23.9 37.4
   6
##
   7
               47.3 64.9
##
                 21.4 58.1
   8
##
                 56.5 71.3
                 36.6 51.2
## 10
## # i 407 more rows
```

Difference in means estimates

Does CCT affect turnout?

Does CCT affect PRI (incumbent) votes?

```
cct |> group_by(treatment) |>
  summarize(pri2000s = mean(pri2000s)) |>
  pivot_wider(names_from = treatment, values_from = pri2000s) |>
  mutate(ATE = `1` - `0`)
```

```
## # A tibble: 1 x 3

## '0' '1' ATE

## <dbl> <dbl> <dbl>

## 1 34.5 38.1 3.62
```

Binary independent variables

$$Y_i = \alpha + \beta X_i + \varepsilon_i$$

- When independent variable X_i is **binary**:
 - Intercept $\hat{\alpha}$ is the average outcome in the X=0 group.
 - Slope $\hat{\beta}$ is the difference-in-means of Y between X=1 group and X=0 group.

$$\hat{eta} = \overline{Y}_{\text{treated}} - \overline{Y}_{\text{control}}$$

 If there are other independent variables, this becomes the difference-in-means controlling for those covariates.

Linear regression for experiments

• Under randomization, we can estimate the ATE with regression:

```
cct |> group_by(treatment) |>
  summarize(pri2000s = mean(pri2000s)) |>
  pivot_wider(names_from = treatment, values_from = pri2000s) |>
 mutate(ATE = `1` - `0`)
## # A tibble: 1 x 3
## `0` `1` ATF
## <dbl> <dbl> <dbl>
## 1 34.5 38.1 3.62
lm(pri2000s ~ treatment, data = cct) |> coef()
## (Intercept) treatment
## 34.49 3.62
```

Categorical variables in regression

- We often have categorical variables:
 - · Race/ethnicity: white, Black, Latino, Asian.
 - · Partisanship: Democrat, Republican, Independent
- Strategy for including in a regression: create a series of binary variables

Unit	Party	Democrat	Republican	Independent
1	Democrat	1	0	0
2	Democrat	1	0	0
3	Independent	0	0	1
4	Republican	0	1	0
:	:	:	:	:

• Then include all but one of these binary variables:

$$turnout_i = \alpha + \beta_1 Republican_i + \beta_2 Independent_i + \varepsilon_i$$

Interpreting categorical variables

$$turnout_i = \alpha + \beta_1 Republican_i + \beta_2 Independent_i + \varepsilon_i$$

- $\hat{\alpha}$: average outcome in the **omitted group/baseline** (Democrats).
- $\hat{\beta}$ coefficients: average difference between each group and the baseline.
 - \hat{eta}_1 : average difference in turnout between Republicans and Democrats
 - + \hat{eta}_2 : average difference in turnout between Independents and Democrats

CCES data

library(gov50data) cces_2020

```
## # A tibble: 51,551 x 6
##
     gender race educ
                                  pid3 turnout self pres vote
##
                                  <fct>
     <fct> <fct> <fct>
                                                <dbl> <fct>
                                                   1 Donald J~
##
   1 Male White 2-year
                                  Repu~
   2 Female White Post-grad
##
                                  Demo~
                                                  NA <NA>
##
   3 Female White 4-year
                                  Tnde~
                                                   1 Joe Bide~
##
   4 Female White 4-year
                                  Demo~
                                                   1 Joe Bide~
##
   5 Male White 4-year
                                  Inde~
                                                   1 Other
##
   6 Male White Some college
                                  Repu~
                                                   1 Donald J~
##
   7 Male Black Some college
                                  Not ~
                                                  NA <NA>
##
   8 Female White Some college
                                  Inde~
                                                   1 Donald J~
                                                   1 Donald J~
##
   9 Female White High school gr~ Repu~
## 10 Female White 4-year
                                                   1 Joe Bide~
                                  Demo~
  # i 51,541 more rows
```

Categorical variables in the CCES data

```
turnout_pred <- lm(turnout_self ~ pid3, data = cces_2020)
turnout_pred</pre>
```

```
##
## Call:
  lm(formula = turnout self ~ pid3, data = cces 2020)
##
  Coefficients:
##
       (Intercept)
                     pid3Republican pid3Independent
##
            0.9635
                            -0.0103
                                             -0.0394
##
         pid30ther
                       pid3Not sure
##
           -0.0066
                            -0.3331
```

What R does internally with factor variables in lm

```
cces_2020 |> drop_na(turnout_self, pid3) |> select(pid3) |> pull() |>
head()
```

```
## [1] Republican Independent Democrat Independent
## [5] Republican Independent
## 7 Levels: Democrat Republican Independent ... not asked
```

```
model.matrix(turnout_pred) |>
  head()
```

##		(Intercept) pid3R	epublican	pid3Inde	pendent	pid30ther	
##	1		1	1		0	Θ	
##	3		1	0		1	Θ	
##	4		1	0		0	Θ	
##	5		1	0		1	Θ	
##	6		1	1		0	Θ	
##	8		1	0		1	Θ	
##		pid3Not su	re					
##	1		0					
##	3		0					
##	4		0					
##	5		Θ					
##	6		Θ					