Gov 50: 17. Sampling

Matthew Blackwell

Harvard University

- 1. Sampling exercise
- 2. Sampling framework
- 3. Polls

1/ Sampling exercise

Data on class years enrolled in Gov 50

library(gov50data) class_years

A tibble: 122 x 1

- ## year
- ## <chr>
- ## 1 Senior
- ## 2 Junior
- ## 3 Sophomore
- ## 4 Junior
- ## 5 Graduate Year 2
- ## 6 Sophomore
- ## 7 Professional Year 2
- ## 8 First-Year
- ## 9 Sophomore
- ## 10 Junior
- ## # i 112 more rows

What proportion of the class is first years?

class_years |>
 count(year) |>
 mutate(prop = n / nrow(class_years))

```
## # A tibble: 9 x 3
```

##		year	n	prop
##		<chr></chr>	<int></int>	<dbl></dbl>
##	1	First-Year	25	0.205
##	2	Graduate Year 1	2	0.0164
##	3	Graduate Year 2	1	0.00820
##	4	Junior	31	0.254
##	5	Not Set	3	0.0246
##	6	Professional Year 2	2	0.0164
##	7	Senior	14	0.115
##	8	Sophomore	43	0.352
##	9	Year 1, Semester 1	1	0.00820

We can use the slice_sample() function to take a random sample of rows of a tibble:

class_years |>
 slice_sample(n = 5)

```
## # A tibble: 5 x 1
## year
## <chr>
## 1 First-Year
## 2 Sophomore
## 3 Junior
## 4 Sophomore
## 5 Junior
```

class_years |> slice_sample(n = 5)

- ## # A tibble: 5 x 1
- ## year
- ## <chr>
- ## 1 Senior
- ## 2 Sophomore
- ## 3 First-Year
- ## 4 Junior
- ## 5 Junior

```
class_years |>
  slice_sample(n = 20) |>
  summarize(fy_prop = mean(year == "First-Year"))
```

```
## # A tibble: 1 x 1
## fy_prop
## <dbl>
## 1 0.05
```

Repeated sampling

We sometimes want to draw multiple samples from a tibble. For this we can use rep_slice_sample() from the infer package:

```
library(infer)
class_years |>
 rep_slice_sample(n = 5, reps = 2)
  # A tibble: 10 \times 2
##
  # Groups: replicate [2]
##
     replicate year
##
        <int> <chr>
##
## 1
            1 Sophomore
          1 Junior
## 2
##
          1 Sophomore
   3
           1 Junior
## 4
         1 Sophomore
##
   5
         2 First-Year
##
   6
##
         2 First-Year
   7
## 8
         2 Senior
## 9
          2 First-Year
            2 Professional Year 2
##
  10
```

Simulate many separate studies being done

```
samples_n20 <- class_years |>
    rep_slice_sample(n = 20, reps = 100) |>
    group_by(replicate) |>
    summarize(fy_prop = mean(year == "First-Year"))
samples_n20
```

##	# A til	oble: 100	x 2
##	rep	licate fy_	prop
##		<int> <</int>	<dbl></dbl>
##	1	1	0.15
##	2	2	0.25
##	3	3	0.1
##	4	4	0.2
##	5	5	0.2
##	6	6	0.2
##	7	7	0.35
##	8	8	0.2
##	9	9	0.2
##	10	10	0.2
##	# i 90	more rows	5

```
samples_n20 |>
ggplot(mapping = aes(x = fy_prop)) +
geom_histogram(binwidth=0.05) +
lims(x = c(0, 1))
```



```
samples_n50 <- class_years |>
  rep_slice_sample(n = 50, reps = 100) |>
  group_by(replicate) |>
  summarize(fy_prop = mean(year == "First-Year"))
samples_n50 |>
  ggplot(mapping = aes(x = fy_prop)) +
  geom_histogram(binwidth=0.05) +
  lims(x = c(0, 1))
```



```
samples_n100 <- class_years |>
  rep_slice_sample(n = 100, reps = 100) |>
  group_by(replicate) |>
  summarize(fy_prop = mean(year == "First-Year"))
samples_n100 |>
  ggplot(mapping = aes(x = fy_prop)) +
  geom_histogram(binwidth=0.05) +
  lims(x = c(0, 1))
```


Sample size and variability across samples

```
samples_n20 |>
   summarize(sd(fy_prop)) |> pull()
```

```
## [1] 0.0735
```

```
samples_n50 |>
   summarize(prop_sd = sd(fy_prop)) |> pull()
```

[1] 0.0457

```
samples_n100 |>
    summarize(prop_sd = sd(fy_prop)) |> pull()
```

[1] 0.0164

2/ Sampling framework

Population: group of units/people we want to learn about.

Population parameter: some numerical summary of the population we would like to know. - population mean/proportion, population standard deviation.

Census: complete recording of data on the entire population.

Sample: subset of the population taken in some way (hopefully randomly).

Estimator or sample statistic: numerical summary of the sample that is our "best guess" for the unknown population parameter.

Random sample: units selected into sample from population with a non-zero probability.

Simple random sample: all units have the same probability of being selected into the sample.

- **Population**: all students enrolled in Gov 50.
- **Population parameter**: population proportion of first-years enrolled in Gov 50
 - Population proportions often denoted p
- Sample: simple random sample of different sizes.
- Sample statistic/estimator: sample proportion of first-years
 - Estimators often denoted with a hat: \hat{p}
 - We saw the \hat{p} varies with the random sample taken.

Expected value

The **expected value** of a sample statistic, $\mathbb{E}[\hat{p}]$, is the average value of the statistic across repeated samples.

samples_n100 |>
 summarize(mean(fy_prop)) |> pull()

[1] 0.203

When we have a simple random sample, the **expected value** of a sample proportion is equal to the population proportion, $\mathbb{E}[\hat{p}] = p$

Not true if our sample is **biased** in some way!

The **standard error** is the standard deviation of the sample statistic across repeated samples.

samples_n100 |>
 summarize(sd(fy_prop)) |> pull()

[1] 0.0164

Tells us how far away, on average, the sample proportion will be from the population proportion.

Standard error vs population standard deviation

The **standard error** is the SD of the statistic across repeated samples.

Should not be confused with the population standard deviation or sample standard deviation, both of which measure how far **units** are away from a mean.

3/ Polls

How popular is Joe Biden?

- What proportion of the public approves of Biden's job as president?
- Latest Gallup poll:
 - Oct 2nd-23rd
 - 1,009 adult Americans
 - Telephone interviews
 - Approve (37%), Disapprove (59%)

- **Population**: adults 18+ living in 50 US states and DC.
- **Population parameter**: population proportion of all US adults that approve of Biden.
 - Census: not possible.
- Sample: random digit dialing phone numbers (cell and landline).
- **Point estimate**: sample proportion that approve of Biden

Where are we going?

We only get 1 sample. Can we learn about the population from that sample?