Gov 50: 17. Sampling

Matthew Blackwell

Harvard University

Roadmap

1. Sampling exercise
2. Sampling framework
3. Polls

1/ Sampling exercise

Data on class years enrolled in Gov 50

```
library(gov50data)
class_years
## # A tibble: 122 x 1
## year
## <chr>
## 1 Senior
## 2 Junior
## 3 Sophomore
## 4 Junior
## 5 Graduate Year 2
## 6 Sophomore
## 7 Professional Year 2
## 8 First-Year
## 9 Sophomore
## 10 Junior
## # i 112 more rows
```


What proportion of the class is first years?

```
class_years |>
    count(year) |>
    mutate(prop = n / nrow(class_years))
```

\#\# \# A tibble: 9 x 3

\#\#	year	n	prop
\#\#	<chr>	<int>	<dbl>
\#\# 1	1 First-Year	25	0.205
\#\# 2	2 Graduate Year 1	2	0.0164
\#\# 3	3 Graduate Year 2	1	0.00820
\#\# 4	4 Junior	31	0.254
\#\# 5	5 Not Set	3	0.0246
\#\# 6	6 Professional Year 2	2	0.0164
\#\# 7	7 Senior	14	0.115
\#\# 8	8 Sophomore	43	0.352
\#\# 9	9 Year 1, Semester 1		0.00820

Let's take some samples!

We can use the slice_sample() function to take a random sample of rows of a tibble:

```
class_years |>
    slice_sample(n = 5)
```

\#\# \# A tibble: 5 x 1
\#\# year
\#\# <chr>
\#\# 1 First-Year
\#\# 2 Sophomore
\#\# 3 Junior
\#\# 4 Sophomore
\#\# 5 Junior

Another sample

```
class_years |>
    slice_sample(n = 5)
## # A tibble: 5 x 1
## year
## <chr>
## 1 Senior
## 2 Sophomore
## 3 First-Year
## 4 Junior
## 5 Junior
```


Sample proportion of first-years

```
class_years |>
    slice_sample(n = 20) |>
    summarize(fy_prop = mean(year == "First-Year"))
## # A tibble: 1 x 1
## fy_prop
## <dbl>
## 1 0.05
```


Repeated sampling

We sometimes want to draw multiple samples from a tibble. For this we can use rep_slice_sample() from the infer package:

```
library(infer)
class_years |>
    rep_slice_sample(n = 5, reps = 2)
```

\#\# \# A tibble: 10×2
\#\# \# Groups: replicate [2]
\#\# replicate year
\#\# <int> <chr>

\#\#	1	1	Sophomore
\#\#	2	1	Junior
\#\#	3	1	Sophomore
\#\#	4	1	Junior
\#\#	5	1	Sophomore
\#\#	6	2	First-Year
\#\#	7	2	First-Year
\#\#	8	2	Senior
\#\#	9	2	First-Year
\#\#	10	2	Professional Year 2

Simulate many separate studies being done

```
samples_n20 <- class_years |>
    rep_slice_sample(n = 20, reps = 100) |>
    group_by(replicate) |>
    summarize(fy_prop = mean(year == "First-Year"))
samples_n20
```

\#\# \# A tibble: 100×2
$\left.\begin{array}{lrr}\text { \#\# } & \text { replicate } \\ \text { \#\# } & \begin{array}{r}\text { fy_prop } \\ \text { <int> }\end{array} & \text { <dbl> } \\ \text { \#\# } & 1 & 1\end{array}\right) 0.15$
\#\# \# i 90 more rows

Distribution of these proportions

```
samples_n20 |>
    ggplot(mapping = aes(x = fy_prop)) +
    geom_histogram(binwidth=0.05) +
    lims(x = c(0, 1))
```


What if the sample sizes are bigger?

```
samples_n50 <- class_years |>
    rep_slice_sample(n = 50, reps = 100) |>
    group_by(replicate) |>
    summarize(fy_prop = mean(year == "First-Year"))
samples_n50 |>
    ggplot(mapping = aes(x = fy_prop)) +
    geom_histogram(binwidth=0.05) +
    lims(x = c(0, 1))
```


What if the sample sizes are bigger?

```
samples_n100 <- class_years |>
    rep_slice_sample(n = 100, reps = 100) |>
    group_by(replicate) |>
    summarize(fy_prop = mean(year == "First-Year"))
samples_n100 |>
    ggplot(mapping = aes(x = fy_prop)) +
    geom_histogram(binwidth=0.05) +
    lims(x = c(0, 1))
```


Sample size and variability across samples

```
samples_n20 |>
    summarize(sd(fy_prop)) |> pull()
```

\#\# [1] 0.0735
samples_n50 |>
summarize(prop_sd = sd(fy_prop)) |> pull()
\#\# [1] 0.0457
samples_n100 |>
summarize(prop_sd = sd(fy_prop)) |> pull()
\#\# [1] 0.0164

2/ Sampling framework

Population: group of units/people we want to learn about.

Population parameter: some numerical summary of the population we would like to know. - population mean/proportion, population standard deviation.

Census: complete recording of data on the entire population.

Samples

Sample: subset of the population taken in some way (hopefully randomly).

Estimator or sample statistic: numerical summary of the sample that is our "best guess" for the unknown population parameter.

Sampling framework

Sampling at random

Random sample: units selected into sample from population with a non-zero probability.

Simple random sample: all units have the same probability of being selected into the sample.

Our sampling exercise

- Population: all students enrolled in Gov 50.
- Population parameter: population proportion of first-years enrolled in Gov 50
- Population proportions often denoted p
- Sample: simple random sample of different sizes.
- Sample statistic/estimator: sample proportion of first-years
- Estimators often denoted with a hat: \hat{p}
- We saw the \hat{p} varies with the random sample taken.

Expected value

The expected value of a sample statistic, $\mathbb{E}[\hat{p}]$, is the average value of the statistic across repeated samples.

```
samples_n100 |>
    summarize(mean(fy_prop)) |> pull()
```

\#\# [1] 0.203

When we have a simple random sample, the expected value of a sample proportion is equal to the population proportion, $\mathbb{E}[\hat{p}]=p$

Not true if our sample is biased in some way!

Standard error

The standard error is the standard deviation of the sample statistic across repeated samples.

```
samples_n100 |>
    summarize(sd(fy_prop)) |> pull()
```

\#\# [1] 0.0164

Tells us how far away, on average, the sample proportion will be from the population proportion.

Standard error vs population standard deviation

The standard error is the SD of the statistic across repeated samples.

Should not be confused with the population standard deviation or sample standard deviation, both of which measure how far units are away from a mean.

The three distributions

3/ Polls

How popular is Joe Biden?

- What proportion of the public approves of Biden's job as president?
- Latest Gallup poll:
- Oct 2nd-23rd
- 1,009 adult Americans
- Telephone interviews
- Approve (37\%), Disapprove (59\%)
- Population: adults $18+$ living in 50 US states and DC.
- Population parameter: population proportion of all US adults that approve of Biden.
- Census: not possible.
- Sample: random digit dialing phone numbers (cell and landline).
- Point estimate: sample proportion that approve of Biden

Where are we going?

We only get 1 sample. Can we learn about the population from that sample?

