
Gov 50: 18. Sampling
Distributions
Matthew Blackwell

Harvard University

1 / 31



Roadmap

1. Polls

2. Random variables and probability distributions

3. Sampling distribution

4. Normal variables and the Central Limit Theorem

2 / 31



1/ Polls



How popular is Joe Biden?

• What proportion of the public approves of Biden’s job as president?

• Latest Gallup poll:

• Oct 2nd-23rd
• 1,009 adult Americans
• Telephone interviews
• Approve (37%), Disapprove (59%)
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Poll in our framework

• Population: adults 18+ living in 50 US states and DC.

• Population parameter: population proportion of all US adults that
approve of Biden.

• Census: not possible.

• Sample: random digit dialing phone numbers (cell and landline).

• Point estimate: sample proportion that approve of Biden
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2/ Random variables and
probability distributions



Random variables

Random variables are numerical summaries of chance processes:

𝘟𝘪 =
⎧{
⎨{⎩

𝟣 if respondent 𝘪 supports Biden,
𝟢 otherwise

With a simple random sample, chance of 𝘟𝘪 = 𝟣 is equal to the population
proportion of people that support Biden.
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Types of random variables

• Discrete: 𝘟 can take a finite (or countably infinite) number of values.

• Number of heads in 5 coin flips
• Sampled senator is a woman (𝘟 = 𝟣) or not (𝘟 = 𝟢)
• Number of battle deaths in a civil war

• Continuous: 𝘟 can take any real value (usually within an interval).

• GDP per capita (average income) in a country.
• Share of population that approves of Biden.
• Amount of time spent on a website.
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Probability distributions

Probability distributions tell us the chances of different values of a r.v.
occurring

Discrete variables: like a frequency barplot for the population distribution.

Continuous variables: like a continuous version of population histogram.
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Discrete probability distribution

We can use the y = after_stat(prop) aesthetic to get a barplot with
proportions instead of count to show us the chance/probability of selecting
a first-year student:
library(gov50data)
class_years |>
mutate(first_year = as.numeric(year == "First-Year")) |>
ggplot(aes(x = first_year)) +
geom_bar(mapping = aes(y = after_stat(prop)), width = 0.1)
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Discrete probability distribution
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Midwest data
library(ggplot2)
midwest

## # A tibble: 437 x 28
## PID county state area poptotal popdensity popwhite
## <int> <chr> <chr> <dbl> <int> <dbl> <int>
## 1 561 ADAMS IL 0.052 66090 1271. 63917
## 2 562 ALEXANDER IL 0.014 10626 759 7054
## 3 563 BOND IL 0.022 14991 681. 14477
## 4 564 BOONE IL 0.017 30806 1812. 29344
## 5 565 BROWN IL 0.018 5836 324. 5264
## 6 566 BUREAU IL 0.05 35688 714. 35157
## 7 567 CALHOUN IL 0.017 5322 313. 5298
## 8 568 CARROLL IL 0.027 16805 622. 16519
## 9 569 CASS IL 0.024 13437 560. 13384
## 10 570 CHAMPAIGN IL 0.058 173025 2983. 146506
## # i 427 more rows
## # i 21 more variables: popblack <int>, popamerindian <int>,
## # popasian <int>, popother <int>, percwhite <dbl>,
## # percblack <dbl>, percamerindan <dbl>, percasian <dbl>,
## # percother <dbl>, popadults <int>, perchsd <dbl>,
## # percollege <dbl>, percprof <dbl>,
## # poppovertyknown <int>, percpovertyknown <dbl>, ...
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Continuous probability distribution

We can use the y = after_stat(density) to create a density histogram
instead of a count histogram so that the area of the histogram boxes are
equal to the chance of randomly selecting a unit in that bin:
midwest |>
ggplot(aes(x = percollege)) +
geom_histogram(aes(y = after_stat(density)), binwidth = 1)
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Continuous probability distribution
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Why density?

Histograms with density on the y-axis are drawn so that the area of each box
is equal to the proportion of units in the sample in that horizontal bin.

Easier to compare distributions across sample sizes.

Sum up all the area = 1 (but heights can go above 1)
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3/ Sampling distribution



Key properties of sums and means

Suppose 𝘟𝟣, 𝘟𝟤, … , 𝘟𝘯 is a simple random sample from a population
distribution with mean 𝜇 (“mu”) and variance 𝜎 𝟤 (“sigma squared”)

Sample mean: 𝘟 𝘯 = 𝟣
𝘯 ∑𝘯

𝘪=𝟣 𝘟𝘪

𝘟 𝘯 = 𝘟𝟣 + 𝘟𝟤 + ⋯ + 𝘟𝘯
𝘯

𝘟 𝘯 is a random variable with a distribution!!
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Sample means/proportions distribution

Sampling distributions are the probability distributions of an estimator like
𝘟 𝘯

When we have access to the full population, we can approximate the
sampling distribution with repeated sampling.
library(infer)
midwest |>
rep_slice_sample(n = 50, reps = 100) |>
group_by(replicate) |>
summarize(`Avergage Percent College` = mean(percollege)) |>
ggplot(aes(x = `Avergage Percent College`)) +
geom_histogram(mapping = aes(y = after_stat(density)), binwidth = 0.5) +
coord_cartesian(xlim = c(14, 23), ylim = c(0, 0.7)) +
labs(title = "100 Repetitions") +
stat_function(fun = dnorm, args = c(mean(midwest$percollege), sd(midwest$percollege) / sqrt(50)), n = 500,

color = "indianred1", size = 1.5, xlim = c(14, 23))
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Sampling distribution of the sample mean

Suppose 𝘟𝟣, 𝘟𝟤, … , 𝘟𝘯 is a simple random sample from a population
distribution with mean 𝜇 and variance 𝜎 𝟤.

Expected value of the distribution of 𝘟 𝘯 is the population mean, 𝜇.

Standard error of the distribution of 𝘟 𝘯 is approximately 𝜎/√𝘯:

𝘚𝘌 ≈ population standard deviation
√sample size
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Unbiasedness

An estimator is unbiased when its expected value across repeated samples
equals the population parameter of interest.

Sample mean of a simple random sample is unbiased for the population
mean, 𝔼[𝘟 𝘯] = 𝜇

An estimator that isn’t unbiased is called biased.
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Precision vs accuracy
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Law of large numbers

Law of large numbers

Let 𝘟𝟣, … , 𝘟𝘯 be a simple random sample from a population with mean 𝜇 and
finite variance 𝜎 𝟤. Then, 𝘟 𝘯 converges to 𝜇 as 𝘯 gets large.

• Probability of 𝘟 𝘯 being “far away” from 𝜇 goes to 0 as 𝘯 gets big.

• The distribution of sample mean “collapses” to population mean.

• Can see this from the SE of 𝘟 𝘯: 𝘚𝘌 = 𝜎/√𝘯.

• Not necessarily true with a biased sample!
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4/ Normal variables and
the Central Limit Theorem



Normal random variable

x

• A normal distribution has a PDF that is the classic “bell-shaped” curve.

• Extremely ubiquitous in statistics.
• An r.v. is more likely to be in the center, rather than the tails.

• Three key properties of this PDF:

• Unimodal: one peak at the mean.
• Symmetric around the mean.
• Everywhere positive: any real value can possibly occur.
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Normal distribution

x

μ

σ2

• A normal distribution can be affect by two values:

• mean/expected value usually written as 𝜇
• variance written as 𝜎 𝟤 (standard deviation is 𝜎)
• Written 𝘟 ∼ 𝘕(𝜇, 𝜎 𝟤).

• Standard normal distribution: mean 0 and standard deviation 1.
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Central limit theorem

Central limit theorem
Let 𝘟𝟣, … , 𝘟𝘯 be a simple random sample from a population with mean 𝜇 and
finite variance 𝜎 𝟤. Then, 𝘟 𝘯 will be approximately distributed 𝘕(𝜇, 𝜎 𝟤/𝘯) in
large samples.

• “Sample means tend to be normally distributed as samples get large.”

• ⇝ we know (an approx. of) the entire probability distribution of 𝘟 𝘯

• Approximation is better as 𝘯 goes up.
• Does not depend on the distribution of 𝘟𝘪 !
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• Approximation is better as 𝘯 goes up.
• Does not depend on the distribution of 𝘟𝘪 !
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Empirical Rule for the Normal Distribution

μ − 3σ μ − 2σ μ −σ μ μ +σ μ + 2σ μ + 3σ

• If 𝘟 ∼ 𝘕(𝜇, 𝜎 𝟤), then:
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Empirical Rule for the Normal Distribution

μ − 3σ μ − 2σ μ −σ μ μ +σ μ + 2σ μ + 3σ

0.68

• If 𝘟 ∼ 𝘕(𝜇, 𝜎 𝟤), then:
• ≈ 68% of the distribution of 𝘟 is within 1 SD of the mean.
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Empirical Rule for the Normal Distribution

μ − 3σ μ − 2σ μ −σ μ μ +σ μ + 2σ μ + 3σ

0.95

• If 𝘟 ∼ 𝘕(𝜇, 𝜎 𝟤), then:
• ≈ 68% of the distribution of 𝘟 is within 1 SD of the mean.
• ≈ 95% of the distribution of 𝘟 is within 2 SDs of the mean.
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Empirical Rule for the Normal Distribution

μ − 3σ μ − 2σ μ −σ μ μ +σ μ + 2σ μ + 3σ

0.997

• If 𝘟 ∼ 𝘕(𝜇, 𝜎 𝟤), then:
• ≈ 68% of the distribution of 𝘟 is within 1 SD of the mean.
• ≈ 95% of the distribution of 𝘟 is within 2 SDs of the mean.
• ≈ 99.7% of the distribution of 𝘟 is within 3 SDs of the mean.

• CLT + empirical rule: we’ll know the rough distribution of estimation
errors we should expect.
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Where are we going?

Population Sample

probability

inference

We only get 1 sample. Can we learn about the population from that sample?
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