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Roadmap

1. Bootstrap CIs for a difference in means

2. Bootstrap CIs for a difference in ATEs

3. Interpreting confidence intervals

2 / 27



1/ Bootstrap CIs for a
difference in means



Comparison between groups

• Last time: confidence intervals for means.

• More interesting to compare across groups.

• Differences in public opinion across groups
• Difference between treatment and control groups.

• Bedrock of causal inference!
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Trains experiment

• Back to the Boston trains example.

• Boston commuter rail platform setting.

• Treatment group: presence of native Spanish-speaking confederates.

• Control group: no confederates.

• Outcome: 𝘟𝘪 change in views on immigration.

• Sample average in the treated group, 𝘟𝘛
• Sample average in the control group, 𝘟𝘊

• Estimated average treatment effect

ÂTE = 𝘟𝘛 − 𝘟 𝘊
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ÂTE = 𝘟𝘛 − 𝘟 𝘊

4 / 27



Trains experiment

• Back to the Boston trains example.

• Boston commuter rail platform setting.

• Treatment group: presence of native Spanish-speaking confederates.

• Control group: no confederates.

• Outcome: 𝘟𝘪 change in views on immigration.

• Sample average in the treated group, 𝘟𝘛
• Sample average in the control group, 𝘟𝘊

• Estimated average treatment effect

ÂTE = 𝘟𝘛 − 𝘟 𝘊

4 / 27



Trains experiment

• Back to the Boston trains example.

• Boston commuter rail platform setting.

• Treatment group: presence of native Spanish-speaking confederates.

• Control group: no confederates.

• Outcome: 𝘟𝘪 change in views on immigration.

• Sample average in the treated group, 𝘟𝘛
• Sample average in the control group, 𝘟𝘊

• Estimated average treatment effect

ÂTE = 𝘟𝘛 − 𝘟 𝘊

4 / 27



Inference for the difference

• Parameter: population ATE 𝜇𝘛 − 𝜇𝘊

• 𝜇𝘛 : Average outcome in the population if everyone received treatment.
• 𝜇𝘊 : Average outcome in the population if everyone received control.

• Difference-in-means estimator: ÂTE = 𝘟 𝘛 − 𝘟 𝘊

• 𝘟 𝘛 has a distribution centered on 𝜇𝘛

• 𝘟 𝘊 has a distribution centered on 𝜇𝘊

• ⇝ 𝘟 𝘛 − 𝘟 𝘊 has a distribution centered on 𝜇𝘛 − 𝜇𝘊

• Sample difference in means is on average equal to the population
difference in means.
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Trains data
library(gov50data)
trains

## # A tibble: 115 x 14
## age male income white college usborn treatment
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 31 0 135000 1 1 1 1
## 2 34 0 105000 1 1 0 1
## 3 63 1 135000 1 1 1 1
## 4 45 1 300000 1 1 1 1
## 5 55 1 135000 1 1 1 0
## 6 37 0 87500 1 1 1 1
## 7 53 0 87500 1 0 1 0
## 8 36 1 135000 1 1 1 1
## 9 54 0 105000 1 0 1 0
## 10 42 1 135000 1 1 1 1
## # i 105 more rows
## # i 7 more variables: ideology <dbl>, numberim.pre <dbl>,
## # numberim.post <dbl>, remain.pre <dbl>,
## # remain.post <dbl>, english.pre <dbl>,
## # english.post <dbl>
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Estimating the difference in means

diff_in_means <- trains |>
group_by(treatment) |>
summarize(post_mean = mean(numberim.post)) |>
pivot_wider(names_from = treatment, values_from = post_mean) |>
mutate(ATE = `1` - `0`)

diff_in_means

## # A tibble: 1 x 3
## `0` `1` ATE
## <dbl> <dbl> <dbl>
## 1 2.73 3.12 0.383
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Bootstrap for the difference in means
library(infer)
dim_boots <- trains |>
rep_slice_sample(prop = 1, replace = TRUE, reps = 1000) |>
group_by(replicate, treatment) |>
summarize(post_mean = mean(numberim.post)) |>
pivot_wider(names_from = treatment, values_from = post_mean) |>
mutate(ATE = `1` - `0`)

dim_boots

## # A tibble: 1,000 x 4
## # Groups: replicate [1,000]
## replicate `0` `1` ATE
## <int> <dbl> <dbl> <dbl>
## 1 1 2.79 2.91 0.121
## 2 2 2.63 3.09 0.455
## 3 3 2.67 2.92 0.245
## 4 4 2.75 3.17 0.427
## 5 5 2.70 3.40 0.694
## 6 6 2.70 3.21 0.507
## 7 7 2.89 3.10 0.207
## 8 8 2.83 2.91 0.0758
## 9 9 2.77 3.09 0.322
## 10 10 2.76 3.06 0.304
## # i 990 more rows
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Visualizing the bootstraps
dim_boots |>
ggplot(aes(x = ATE)) +
geom_histogram(aes(y = after_stat(density)), binwidth = 0.05)
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Calculating the percentile CI

You can use get_confidence_interval() with your “hand-rolled”
bootstraps, but you have to make sure you only pass it the variable of
interest using select:
dim_ci_95 <- dim_boots |>
select(replicate, ATE) |>
get_confidence_interval(level = 0.95, type = "percentile")

dim_ci_95

## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 0.0697 0.707
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What about change in views as the outcome?

change_ci_95 <- trains |>
rep_slice_sample(prop = 1, replace = TRUE, reps = 1000) |>
group_by(replicate, treatment) |>
summarize(change_mean = mean(numberim.post - numberim.pre)) |>
pivot_wider(names_from = treatment, values_from = change_mean) |>
mutate(ATE = `1` - `0`) |>
select(replicate, ATE) |>
get_confidence_interval(level = 0.95, type = "percentile")

change_ci_95

## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 -0.00167 0.610
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What’s different?

Let’s look at the width of the two confidence intervals:
## Post outcome width
dim_ci_95[2]-dim_ci_95[1]

## upper_ci
## 1 0.637
## Change outcome width
change_ci_95[2] - change_ci_95[1]

## upper_ci
## 1 0.612
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Width of CI depends on outcome variability

Change CI is narrower! Why? Because the change is less variable than the
post outcome:
trains |> summarize(sd_post = sd(numberim.post),

sd_change = sd(numberim.post - numberim.pre))

## # A tibble: 1 x 2
## sd_post sd_change
## <dbl> <dbl>
## 1 0.917 0.826
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inferworkflow

For infer, we have to do a bit of massaging. It wants the treatment variable
to be a vector and we have to tell it what order we take the difference:
dim_boots_infer <- trains |>
mutate(treatment = if_else(treatment == 1, "Treated", "Control")) |>
specify(numberim.post ~ treatment) |>
generate(reps = 1000, type = "bootstrap") |>
calculate(stat = "diff in means", order = c("Treated", "Control"))

dim_boots_infer |>
get_confidence_interval(level = 0.95, type = "percentile")

## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 0.0735 0.715
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2/ Bootstrap CIs for a
difference in ATEs



Interactions

We have also estimated conditional ATEs:

𝘈𝘛𝘌college = 𝘟 𝘛,college − 𝘟 𝘊,college

𝘈𝘛𝘌noncollege = 𝘟 𝘛,noncollege − 𝘟 𝘊,noncollege

An interaction between treatment and college is the difference between
these two effects:

𝘈𝘛𝘌college − 𝘈𝘛𝘌noncollege

This is a random variable and has a sampling distribution.
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Estimating the interaction
To estimate the interaction, we need to pivot both treatment and college to
the columns.
trains |>
mutate(

treatment = if_else(treatment == 1, "Treated", "Control"),
college = if_else(college == 1, "College", "Noncollege")

) |>
group_by(treatment, college) |>
summarize(post_mean = mean(numberim.post)) |>
pivot_wider(

names_from = c(treatment, college),
values_from = post_mean

)

## # A tibble: 1 x 4
## Control_College Control_Noncollege Treated_College
## <dbl> <dbl> <dbl>
## 1 2.63 3.57 3.11
## # i 1 more variable: Treated_Noncollege <dbl>
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Estimating the interaction
trains |>
mutate(

treatment = if_else(treatment == 1, "Treated", "Control"),
college = if_else(college == 1, "College", "Noncollege")

) |>
group_by(treatment, college) |>
summarize(post_mean = mean(numberim.post)) |>
pivot_wider(

names_from = c(treatment, college),
values_from = post_mean

) |>
mutate(

ATE_c = Treated_College - Control_College,
ATE_nc = Treated_Noncollege - Control_Noncollege,
interaction = ATE_c - ATE_nc

) |>
select(ATE_c, ATE_nc, interaction)

## # A tibble: 1 x 3
## ATE_c ATE_nc interaction
## <dbl> <dbl> <dbl>
## 1 0.482 -0.429 0.911 17 / 27



Bootstrapping the interaction

int_boots <- trains |>
mutate(

treatment = if_else(treatment == 1, "Treated", "Control"),
college = if_else(college == 1, "College", "Noncollege")

) |>
rep_slice_sample(prop = 1, replace = TRUE, reps = 1000) |>
group_by(replicate, treatment, college) |>
summarize(post_mean = mean(numberim.post)) |>
pivot_wider(

names_from = c(treatment, college),
values_from = post_mean

) |>
mutate(

ATE_c = Treated_College - Control_College,
ATE_nc = Treated_Noncollege - Control_Noncollege,
interaction = ATE_c - ATE_nc

) |>
select(replicate, ATE_c, ATE_nc, interaction)
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int_boots

## # A tibble: 1,000 x 4
## # Groups: replicate [1,000]
## replicate ATE_c ATE_nc interaction
## <int> <dbl> <dbl> <dbl>
## 1 1 0.259 -0.667 0.926
## 2 2 0.432 -0.775 1.21
## 3 3 0.239 -0.337 0.576
## 4 4 0.559 -0.214 0.773
## 5 5 0.641 -0.120 0.761
## 6 6 0.758 -0.556 1.31
## 7 7 0.807 -0.286 1.09
## 8 8 0.472 -0.171 0.643
## 9 9 0.470 -1 1.47
## 10 10 0.182 -0.525 0.707
## # i 990 more rows
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Getting the confidence interval

We have to drop NA values because sometimes the bootstrap gets a draw of
all college or all noncollege and we can’t calculate the interaction:
int_boots |>
select(replicate, interaction) |>
drop_na() |>
get_confidence_interval(level = 0.95)

## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 0.0269 1.77
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Visualizing the bootstrap
int_boots |>
ggplot(aes(x = interaction)) +
geom_histogram(aes(y = ..density..), binwidth = 0.1)
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3/ Interpreting confidence
intervals



Interpretation and simulation

• Be careful about interpretation:

• A 95% confidence interval will contain the true value in 95% of repeated
samples.

• For a particular calculated confidence interval, truth is either in it or not.

• A simulation can help our understanding:

• Draw samples of size 1500 assuming population approval for Biden of
𝘱 = 𝟢.𝟦.

• Calculate 95% confidence intervals in each sample.
• See how many overlap with the true population approval.
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Plotting the CIs
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