Gov 50: 19. More
Confidence Intervals
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1. Bootstrap Cls for a difference in means
2. Bootstrap Cls for a difference in ATEs

3. Interpreting confidence intervals
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1/ Bootstrap Cls for a
difference In means



Comparison between groups

+ Last time: confidence intervals for means.

+ More interesting to compare across groups.

+ Differences in public opinion across groups
- Difference between treatment and control groups.

+ Bedrock of causal inference!
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+ Back to the Boston trains example.

- Boston commuter rail platform setting.
- Treatment group: presence of native Spanish-speaking confederates.
-+ Control group: no confederates.

- Outcome: X; change in views on immigration.

- Sample average in the treated group, X+
- Sample average in the control group, X

- Estimated average treatment effect
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Inference for the difference

+ Parameter: population ATE u; — uc

- u7: Average outcome in the population if everyone received treatment.
* uc: Average outcome in the population if everyone received control.

- Difference-in-means estimator: ATE = X, — X

+ X1 has a distribution centered on ur
+ X has a distribution centered on uc

« ~» X1 — X has a distribution centered on u; — uc

- Sample difference in means is on average equal to the population
difference in means.
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Trains data

library(gov50data)
trains

## # A tibble: 115 x 14

#it age male income white college usborn treatment
#it <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##t 1 31 0 135000 1 1 1 1
#t 2 34 0 105000 1 1 0 1
#t 3 63 1 135000 1 1 1 1
#t 4 45 1 300000 1 1 1 1
##t 5 55 1 135000 1 1 1 0
#t 6 37 0 87500 1 1 1 1
#t 7 53 0 87500 1 0 1 0
#t 8 36 1 135000 1 1 1 1
##t 9 54 0 105000 1 0 1 0
## 10 42 1 135000 1 1 1 1

## # 1 105 more rows

## # i 7 more variables: ideology <dbl>, numberim.pre <dbl>,
#it # numberim.post <dbl>, remain.pre <dbl>,

## #  remain.post <dbl>, english.pre <dbl>,

## #  english.post <dbl>
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Estimating the difference in means

diff_in_means <- trains |>
group_by(treatment) |[>
summarize(post_mean = mean(numberim.post)) |[>
pivot_wider(names_from = treatment, values_from = post_mean) |[>
mutate(ATE = "1 - "0°)

diff_in_means

## # A tibble: 1 x 3

## R T1° ATE
#it <db1l> <dbl> <dbl>
## 1 2.73 3.12 0.383
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Bootstrap for

library(infer)
dim_boots <- trains |[>
rep_slice_sample(prop = 1, replace = TRUE, reps 1000) |>

group_by(replicate, treatment) |>
summarize(post_mean = mean(numberim.post)) |[>
pivot_wider(names_from = treatment, values_from post_mean) |>
mutate(ATE = "1° - "0°)

dim_boots

## # A tibble: 1,000 x 4
## # Groups: replicate [1,000]

#it replicate "0° 1 ATE
#it <int> <dbl> <dbl> <dbl>
#t 1 1 2.88 3.12 0.241
#t 2 2 2.56 3.05 0.490
#t 3 3 2.74 2.93 0.188
Ht 4 4 2.76 3.08 0.315
##t 5 5 2.73 3.20 0.477
#t 6 6 2.68 3.04 0.358
Het 7 7 2.56 3.14 0.577
#t 8 8 2.77 3.02 0.251
#t 9 9 2.56 3.02 0.459
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Visualizing the bootstraps

dim_boots |>
ggplot(aes(x = ATE)) +
after_stat(density)), binwidth

geom_histogram(aes(y =

25-

20-

density

0.5-
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Calculating the percentile Cl

You can use get_confidence_interval() with your “hand-rolled”
bootstraps, but you have to make sure you only pass it the variable of
interest using select:

dim_ci_95 <- dim_boots |>
select(replicate, ATE) |>

get_confidence_interval(level = 0.95, type = "percentile")

dim_ci_95

## # A tibble: 1 x 2

##  lower_ci upper_ci
#i <db1l> <dbl>
# 1 0.0627 0.709
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What about change in views as the outcome?

change_ci_95 <- trains |[>
rep_slice_sample(prop = 1, replace = TRUE, reps = 1000) |>
group_by(replicate, treatment) |[>
summarize(change_mean = mean(numberim.post - numberim.pre)) |[>

pivot_wider(names_from = treatment, values_from = change_mean) |[>
mutate(ATE = 1" - "0°) |>

select(replicate, ATE) [>

get_confidence_interval(level = 0.95, type = "percentile")

change_ci_95

## # A tibble: 1 x 2

##  lower_ci upper_ci
#i <dbl> <dbl>
#it 1 0.0243 0.626
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What's different?

Let's look at the width of the two confidence intervals:

dim_ci_95[2]-dim_ci_95[1]

#it upper_ci
Ht 1 0.647

change_ci_95[2] - change_ci_95[1]

##  upper_ci
#t 1 0.602
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Width of Cl depends on outcome variability

Change Cl is narrower! Why? Because the change is less variable than the
post outcome:

trains |> summarize(sd_post = sd(numberim.post),

sd_change = sd(numberim.post - numberim.pre))

## # A tibble: 1 x 2

#t sd_post sd_change
it <db1l> <db1>
## 1 0.917 0.826
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infer workflow

For infer, we have to do a bit of massaging. It wants the treatment variable
to be a vector and we have to tell it what order we take the difference:

dim_boots_infer <- trains |>
mutate(treatment = if_else(treatment == 1, "Treated", "Control")) |[>
specify(numberim.post ~ treatment) |>

generate(reps = 1000, type = "bootstrap") |[>

calculate(stat = "diff in means", order = c("Treated", "Control"))
dim_boots_infer |>

get_confidence_interval(level = 0.95, type = "percentile")

## # A tibble: 1 x 2

##  lower_ci upper_ci
## <dbl> <dbl>
# 1 0.0671 0.695
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2/ Bootstrap Cls for a
difference in ATES



We have also estimated conditional ATEs:

A TEcollege = XT,college - XC,college
ATE X

noncollege — XT,noncollege - XC,noncollege

An interaction between treatment and college is the difference between
these two effects:
ATE,

college —

ATE,

noncollege

This is a random variable and has a sampling distribution.
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Estimating the interaction

To estimate the interaction, we need to pivot both treatment and college to
the columns.

trains |>
mutate(
treatment = if_else(treatment == 1, "Treated", "Control"),
college = if_else(college == 1, "College", "Noncollege")
) >

group_by(treatment, college) |>
summarize(post_mean = mean(numberim.post)) |[>

pivot_wider(
names_from = c(treatment, college),
values_from = post_mean

)

## # A tibble: 1 x 4

##  Control_College Control_Noncollege Treated_College
#it <dbl> <dbl> <dbl>
Ht 1 2.63 3.57 3.11
## # 1 1 more variable: Treated_Noncollege <dbl>
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Estimating the interaction

trains |>
mutate(
treatment = if_else(treatment == 1, "Treated", "Control"),
college = if_else(college == 1, "College", "Noncollege")
) >
group_by(treatment, college) |>
summarize(post_mean = mean(numberim.post)) [>

pivot_wider(
names_from = c(treatment, college),
values_from = post_mean
) 1>
mutate(
ATE_c = Treated_College - Control_College,
ATE_nc = Treated_Noncollege - Control_Noncollege,
interaction = ATE_c - ATE_nc
) >

select(ATE_c, ATE_nc, interaction)

# A tibble: 1 x 3
ATE_c ATE_nc interaction

<dbl> <dbl> <dbl>
1 0.482 -0.429 0.911




Bootstrapping the interaction

int_boots <- trains |[>
mutate(
treatment = if_else(treatment == 1, "Treated", "Control"),
college = if_else(college == 1, "College", "Noncollege")
) >
rep_slice_sample(prop = 1, replace = TRUE, reps = 1000) |>
group_by(replicate, treatment, college) |>
summarize(post_mean = mean(numberim.post)) [>
pivot_wider(
names_from = c(treatment, college),
values_from = post_mean
) >
mutate(
ATE_c = Treated_College - Control_College,
ATE_nc = Treated_Noncollege - Control_Noncollege,
interaction = ATE_c - ATE_nc
) >

select(replicate, ATE_c, ATE_nc, interaction)




## # A tibble:

## # Groups:

##t replicate
#t <int>
#t 1 1
##t 2 2
##t 3 3
#t 4 4
## 5 5
##t 6 6
Ht 7 7
## 8 8
##t 9 9
## 10 10

## # 1 990 more

ATE_c
<dbl>
445
.509
.560
.387
411
.628
.673
.523
244
.704
rows

[clNclN oo oMo oMo o ol

1,000 x 4
replicate [1,000]

ATE_nc interaction

-0.
-0.
=0
-0.
-0.
=0
-0.
-0.

=il

-0.

<dbl>
429
5
375
75
0794
583
0333
375

379

<db1l>
.873
.01
.935
.14
.490
o211
.706
.898
24
.08

P PO O RFr ORFr O R o
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Getting the confidence interval

We have to drop NA values because sometimes the bootstrap gets a draw of
all college or all noncollege and we can’t calculate the interaction:
int_boots [>

select(replicate, interaction) |>

drop_na() |[>
get_confidence_interval(level = 0.95)

## # A tibble: 1 x 2

##  lower_ci upper_ci
#it <db1l> <dbl>
#t 1 0.0221 1.77
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Visualizing the bootstrap

int_boots [>
ggplot(aes(x = interaction)) +
geom_histogram(aes(y = ..density..), binwidth = 0.1)

0.75-
=
5 0.50-
<
%
o
0.25-
0.00 - -
0 1 2
interaction
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3] Interpreting confidence
intervals



Interpretation and simulation

+ Be careful about interpretation:

+ A 95% confidence interval will contain the true value in 95% of repeated
samples.
+ For a particular calculated confidence interval, truth is either in it or not.

« Asimulation can help our understanding:

- Draw samples of size 1500 assuming population approval for Biden of
p = 0.4

+ Calculate 95% confidence intervals in each sample.

+ See how many overlap with the true population approval.
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Plotting the Cls
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Plotting the Cls
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Plotting the Cls
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Plotting the Cls
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Plotting the Cls
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