Gov 50: 19. More Confidence Intervals

Matthew Blackwell

Harvard University

- 1. Bootstrap CIs for a difference in means
- 2. Bootstrap CIs for a difference in ATEs
- 3. Interpreting confidence intervals

1/ Bootstrap CIs for a difference in means

- Last time: confidence intervals for means.
- More interesting to compare across groups.
 - Differences in public opinion across groups
 - Difference between treatment and control groups.
- Bedrock of causal inference!

Trains experiment

- Back to the Boston trains example.
 - Boston commuter rail platform setting.
- Treatment group: presence of native Spanish-speaking confederates.
- Control group: no confederates.
- Outcome: X_i change in views on immigration.
 - Sample average in the treated group, \overline{X}_T
 - Sample average in the control group, \overline{X}_C
- Estimated average treatment effect

$$\widehat{\mathsf{ATE}} = \overline{X}_T - \overline{X}_C$$

Inference for the difference

- + Parameter: **population ATE** $\mu_T \mu_C$
 - μ_T : Average outcome in the population if everyone received treatment.
 - μ_C : Average outcome in the population if everyone received control.
- Difference-in-means estimator: $\widehat{ATE} = \overline{X}_T \overline{X}_C$
- \overline{X}_T has a distribution centered on μ_T
- \overline{X}_C has a distribution centered on μ_C
- $\rightsquigarrow \overline{X}_T \overline{X}_C$ has a distribution centered on $\mu_T \mu_C$
 - Sample difference in means is on average equal to the population difference in means.

Trains data

library(gov50data) trains

## # A tibble: 115 x 14									
##		age	male	income	white	college	usborn	treatmer	t
##		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl< td=""><td>></td></dbl<>	>
##	1	31	Θ	135000	1	1	1		1
##	2	34	Θ	105000	1	1	Θ		1
##	3	63	1	135000	1	1	1		1
##	4	45	1	300000	1	1	1		1
##	5	55	1	135000	1	1	1		Θ
##	6	37	Θ	87500	1	1	1		1
##	7	53	Θ	87500	1	Θ	1		Θ
##	8	36	1	135000	1	1	1		1
##	9	54	Θ	105000	1	Θ	1		Θ
##	10	42	1	135000	1	1	1		1
##	# i 105 more rows								
##	<pre># i 7 more variables: ideology <dbl>, numberim.pre <dbl>,</dbl></dbl></pre>						<dbl>,</dbl>		
##	## # numberim.post <dbl>, remain.pre <dbl>,</dbl></dbl>								

- ## # remain.post <dbl>, english.pre <dbl>,
- ## # english.post <dbl>

```
diff_in_means <- trains |>
  group_by(treatment) |>
  summarize(post_mean = mean(numberim.post)) |>
  pivot_wider(names_from = treatment, values_from = post_mean) |>
  mutate(ATE = `1` - `0`)
diff_in_means
```

```
## # A tibble: 1 x 3
## `0` `1` ATE
## <dbl> <dbl> <dbl>
## 1 2.73 3.12 0.383
```

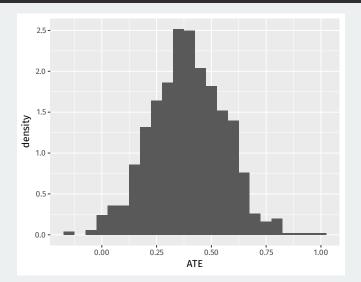
Bootstrap for the difference in means

```
library(infer)
dim_boots <- trains |>
    rep_slice_sample(prop = 1, replace = TRUE, reps = 1000) |>
    group_by(replicate, treatment) |>
    summarize(post_mean = mean(numberim.post)) |>
    pivot_wider(names_from = treatment, values_from = post_mean) |>
    mutate(ATE = `1` - `0`)
dim_boots
```

##	# A	tibble: 1	L,000 >	ζ4	
##	# 0	iroups: 1	replica	ate [1,	,000]
##		replicate	`0`	`1`	ATE
##		<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	1	2.88	3.12	0.241
##	2	2	2.56	3.05	0.490
##	3	3	2.74	2.93	0.188
##	4	4	2.76	3.08	0.315
##	5	5	2.73	3.20	0.477
##	6	6	2.68	3.04	0.358
##	7	7	2.56	3.14	0.577
##	8	8	2.77	3.02	0.251
##	9	9	2.56	3.02	0.459

Visualizing the bootstraps

dim_boots |>



You can use get_confidence_interval() with your "hand-rolled" bootstraps, but you have to make sure you only pass it the variable of interest using select:

```
dim_ci_95 <- dim_boots |>
    select(replicate, ATE) |>
    get_confidence_interval(level = 0.95, type = "percentile")
```

dim_ci_95

##	#	A tibble	: 1 x 2
##		lower_ci	upper_ci
##		<dbl></dbl>	<dbl></dbl>
##	1	0.0627	0.709

What about change in views as the outcome?

```
change_ci_95 <- trains |>
  rep_slice_sample(prop = 1, replace = TRUE, reps = 1000) |>
  group_by(replicate, treatment) |>
  summarize(change_mean = mean(numberim.post - numberim.pre)) |>
  pivot_wider(names_from = treatment, values_from = change_mean) |>
  mutate(ATE = `1` - `0`) |>
  select(replicate, ATE) |>
  get_confidence_interval(level = 0.95, type = "percentile")
change_ci_95
```

```
## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 0.0243 0.626
```

Let's look at the width of the two confidence intervals:

Post outcome width
dim_ci_95[2]-dim_ci_95[1]

upper_ci
1 0.647
Change outcome width
change ci 95[2] - change ci 95[1]

upper_ci
1 0.602

Width of CI depends on outcome variability

Change CI is narrower! Why? Because the change is less variable than the post outcome:

<pre>trains > summarize(sd_post = sd(numberim.post),</pre>						
## # A tibblo ## sd_post ## <dbl> ## 1 0.917</dbl>	<pre>sd_change</pre>					

For infer, we have to do a bit of massaging. It wants the treatment variable to be a vector and we have to tell it what order we take the difference:

```
dim_boots_infer <- trains |>
  mutate(treatment = if_else(treatment == 1, "Treated", "Control")) |>
  specify(numberim.post ~ treatment) |>
  generate(reps = 1000, type = "bootstrap") |>
  calculate(stat = "diff in means", order = c("Treated", "Control"))
dim_boots_infer |>
  get_confidence_interval(level = 0.95, type = "percentile")
```

```
## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 0.0671 0.695
```

2/ Bootstrap CIs for a difference in ATEs

We have also estimated conditional ATEs:

$$ATE_{\text{college}} = \overline{X}_{T,\text{college}} - \overline{X}_{C,\text{college}}$$
$$ATE_{\text{noncollege}} = \overline{X}_{T,\text{noncollege}} - \overline{X}_{C,\text{noncollege}}$$

An **interaction** between treatment and college is the difference between these two effects:

$$ATE_{college} - ATE_{noncollege}$$

This is a random variable and has a **sampling distribution**.

Estimating the interaction

To estimate the interaction, we need to pivot both treatment and college to the columns.

```
trains |>
 mutate(
    treatment = if_else(treatment == 1, "Treated", "Control"),
    college = if_else(college == 1, "College", "Noncollege")
    ) |>
    group_by(treatment, college) |>
    summarize(post_mean = mean(numberim.post)) |>
    pivot_wider(
        names_from = c(treatment, college),
        values_from = post_mean
    )
```

```
## # A tibble: 1 x 4
## Control_College Control_Noncollege Treated_College
## <br/> <br/> <br/> <br/> <br/> <br/> <br/>## 1 2.63 3.57 3.11
## # i 1 more variable: Treated_Noncollege <br/><br/>b
```

Estimating the interaction

```
trains |>
 mutate(
    treatment = if else(treatment == 1, "Treated", "Control"),
    college = if_else(college == 1, "College", "Noncollege")
  group by(treatment, college) |>
  summarize(post mean = mean(numberim.post)) |>
 pivot wider(
    names from = c(treatment, college),
   values_from = post_mean
 mutate(
   ATE c = Treated College - Control_College,
   ATE nc = Treated Noncollege - Control Noncollege,
   interaction = ATE_c - ATE_nc
  select(ATE_c, ATE_nc, interaction)
```

```
## # A tibble: 1 x 3
## ATE_c ATE_nc interaction
## <dbl> <dbl> <dbl>
## 1 0.482 -0.429 0.911
```

Bootstrapping the interaction

```
int boots <- trains |>
 mutate(
    treatment = if else(treatment == 1, "Treated", "Control"),
    college = if_else(college == 1, "College", "Noncollege")
  rep_slice_sample(prop = 1, replace = TRUE, reps = 1000) |>
 group by(replicate, treatment, college) |>
  summarize(post mean = mean(numberim.post)) |>
 pivot wider(
    names from = c(treatment, college),
    values_from = post_mean
 mutate(
   ATE_c = Treated_College - Control_College,
   ATE nc = Treated Noncollege - Control Noncollege,
    interaction = ATE c - ATE nc
  select(replicate, ATE c, ATE nc, interaction)
```

int_boots

##	# A	tibble: :	1,000 >	κ 4			
##	# # Groups: replicate [1,000]						
##	:	replicate	ATE_c	ATE_nc	interaction		
##		<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>		
##	1	1	0.445	-0.429	0.873		
##	2	2	0.509	-0.5	1.01		
##	3	3	0.560	-0.375	0.935		
##	4	4	0.387	-0.75	1.14		
##	5	5	0.411	-0.0794	0.490		
##	6	6	0.628	-0.583	1.21		
##	7	7	0.673	-0.0333	0.706		
##	8	8	0.523	-0.375	0.898		
##	9	9	0.244	-1	1.24		
##	10	10	0.704	-0.375	1.08		
##	# i	990 more	rows				

We have to drop NA values because sometimes the bootstrap gets a draw of all college or all noncollege and we can't calculate the interaction:

```
int_boots |>
   select(replicate, interaction) |>
   drop_na() |>
   get_confidence_interval(level = 0.95)
```

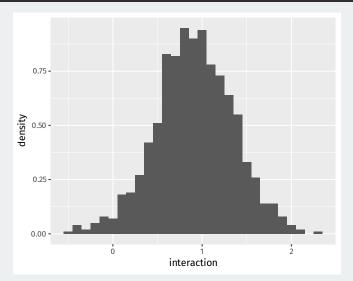
```
## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 0.0221 1.77
```

Visualizing the bootstrap

int_boots |>

ggplot(aes(x = interaction)) +

geom_histogram(aes(y = ..density..), binwidth = 0.1)



3/ Interpreting confidence intervals

- Be careful about interpretation:
 - A 95% confidence interval will contain the true value in 95% of repeated samples.
 - For a particular calculated confidence interval, truth is either in it or not.
- A simulation can help our understanding:
 - Draw samples of size 1500 assuming population approval for Biden of p = 0.4.
 - Calculate 95% confidence intervals in each sample.
 - See how many overlap with the true population approval.

