Gov 50: 21. Hypothesis testing

Matthew Blackwell

Harvard University

1. The lady tasting tea
2. Hypothesis tests
3. Hypothesis testing using infer

1/ The lady tasting tea

The lady tasting tea

Your friend asks you to grab a tea with milk for her before meeting up and she says that she prefers tea poured before the milk. You stop by a local tea shop and ask for a tea with milk. When you bring it to her, she complains that it was prepared milk-first.

- You're skeptical that she can tell the difference, so you devise a test:
- Prepare 8 cups of tea, 4 milk-first, 4 tea-first
- Present cups to friend in a random order
- Ask friend to pick which 4 of the 8 were milk-first.

Lady Tasting Tea data

Friend picks out all 4 milk-first cups correctly!

```
library(gov50data)
tea
```

\#\# \# A tibble: 8 x 2
\#\# truth guess
\#\# <chr> <chr>
\#\# 1 tea-first tea-first
\#\# 2 milk-first milk-first
\#\# 3 milk-first milk-first
\#\# 4 tea-first tea-first
\#\# 5 tea-first tea-first
\#\# 6 milk-first milk-first
\#\# 7 tea-first tea-first
\#\# 8 milk-first milk-first

Thought experiment

Could she have been guessing at random? What would guessing look like?

```
set.seed(02138)
one_guess <- tea |>
    mutate(random_guess = sample(guess))
one_guess
```

```
## # A tibble: 8 x 3
## truth guess random_guess
## <chr> <chr> <chr>
## 1 tea-first tea-first milk-first
## 2 milk-first milk-first tea-first
## 3 milk-first milk-first tea-first
## 4 tea-first tea-first milk-first
## 5 tea-first tea-first tea-first
## 6 milk-first milk-first milk-first
## 7 tea-first tea-first tea-first
## 8 milk-first milk-first milk-first
```

4 correct in this random guess!

Another guess

```
another_guess <- tea |>
    mutate(random_guess = sample(guess))
another_guess
```

\#\# \# A tibble: 8×3
\#\# truth guess random_guess
\#\# <chr> <chr> <chr>
\#\# 1 tea-first tea-first tea-first
\#\# 2 milk-first milk-first tea-first
\#\# 3 milk-first milk-first milk-first
\#\# 4 tea-first tea-first tea-first
\#\# 5 tea-first tea-first milk-first
\#\# 6 milk-first milk-first milk-first
\#\# 7 tea-first tea-first tea-first
\#\# 8 milk-first milk-first milk-first

6 correct in this random guess!

All possible guesses

We could enumerate all possible guesses. "Guessing" would mean choosing one of these at random:

\#\#	Cup 1	Cup 2	Cup 3	Cup 4	Cup 5	Cup 6	Cup 7	Cup 8
\#\#	milk	milk	milk	milk	tea	tea	tea	tea
\#\# 2	milk	milk	milk	tea	milk	tea	tea	tea
\#\# 3	milk	milk	tea	milk	milk	tea	tea	tea
\#\# 4	milk	tea	milk	milk	milk	tea	tea	tea
\#\# 5	tea	milk	milk	milk	milk	tea	tea	tea
\#\# 6	milk	milk	milk	tea	tea	milk	tea	tea
[snip]								

\#\#	Cup 1	Cup 2	Cup 3	Cup 4	Cup 5	Cup 6	Cup 7	Cup 8
\#\# 65	tea	tea	tea	milk	milk	tea	milk	milk
\#\# 66	milk	tea	tea	tea	tea	milk	milk	milk
\#\# 67	tea	milk	tea	tea	tea	milk	milk	milk
\#\# 68	tea	tea	milk	tea	tea	milk	milk	milk
\#\# 69	tea	tea	tea	milk	tea	milk	milk	milk
\#\# 70	tea	tea	tea	tea	milk	milk	milk	milk

Statistical thought experiment

- Statistical thought experiment: how often would she get all 4 correct if she were guessing randomly?
- Only one way to choose all 4 correct cups.
- But 70 ways of choosing 4 cups among 8.
- Choosing at random: picking each of these 70 with equal probability.
- Chances of guessing all 4 correct is $\frac{1}{70} \approx 0.014$ or 1.4%.
- \rightarrow the guessing hypothesis might be implausible.
- Impossible? No, because of random chance!

2/ Hypothesis tests

Statistical hypothesis testing

- Statistical hypothesis testing is a thought experiment.
- Could our results just be due to random chance?
- What would the world look like if we knew the truth?
- Example 1:
- An analyst claims that 20\% of Boston households are in poverty.
- You take a sample of 900 households and find that 23% of the sample is under the poverty line.
- Should you conclude that the analyst is wrong?
- Example 2:
- Trump won 47.5% of the vote in the 2020 election.
- Last YouGov poll of 1,363 likely voters said 44% planned to vote for Trump.
- Could the difference between the poll and the outcome be just due to random chance?

Null and alternative hypothesis

- Null hypothesis: Some statement about the population parameters.
- "Devil's advocate" position \rightsquigarrow assumes what you seek to prove wrong.
- Usually that an observed difference is due to chance.
- Ex: poll drawn from the same population as all voters.
- Denoted H_{0}
- Alternative hypothesis: The statement we hope or suspect is true instead of H_{0}.
- It is the opposite of the null hypothesis.
- An observed difference is real, not just due to chance.
- Ex: polling for Trump is systematically wrong.
- Denoted H_{1} or H_{a}
- Probabilistic proof by contradiction: try to "disprove" the null.

Hypothesis testing example

- Are we polling the same population as the actual voters?
- If so, how likely are we to see polling error this big by chance?
-What is the parameter we want to learn about?
- True population mean of the surveys, p.
- Null hypothesis: $H_{0}: p=0.475$ (surveys drawing from same population)
- Alternative hypothesis: $H_{1}: p \neq 0.475$
- Data: poll has $\bar{X}=0.44$ with $n=1363$.

Statistical thought experiment

- If the null were true, what should the distribution of the data be?
- X_{i} is 1 if respondent i will vote for Trump.
- Under null, X_{i} is a coin flip with probability $p=0.475$ of landing on "Trump".
- $X_{1}+X_{2}+\cdots+X_{n}$ is the number in sample that will vote for Trump.
- We can simulate sums of coin flips using a function called rbinom()
- Compare the distribution of proportions under the null to the observed proportion.

```
null_dist <- tibble(
    trump_share = rbinom(n = 1000, size = 1363, prob = 0.475) / 1363
)
ggplot(null_dist, aes(x = trump_share)) +
    geom_histogram(binwidth = 0.01) +
    geom_vline(xintercept = 0.44, color = "indianred1", size = 1.25) +
    geom_vline(xintercept = 0.475, size = 1.25)
```


Simulations of the reference distribution

p-value

p-value

The \mathbf{p}-value is the probability of observing data as or more extreme as our data if the null hypothesis is true.

- If the null is true, how often would we expect polling errors this big?
- Smaller p-value \rightsquigarrow stronger evidence against the null
- NOT the probability that the null is true!
- p -values are usually two-sided:
- Observed error of $0.44-0.475=-0.035$ under the null.
- p-value is probability of sample proportions being less than 0.44 plus
- Probability of sample proportions being greater than $0.475+0.035=0.51$.
mean(null_dist\$trump_share < 0.44) + mean(null_dist\$trump_share > 0.51)
\#\# [1] 0.01

Two-sided p-value

One-sided tests

- Sometimes our hypothesis is directional.
- We only consider evidence against the null from one direction.
- Null: our polls are from the same population as actual voters
- $H_{0}: p=0.475$
- One-sided alternative: polls underestimate Trump support.
- $H_{1}: p<0.475$
- Makes the p-value one-sided:
- What's the probability of a random sample underestimating Trump support by as much as we see in the sample?
- Always smaller than a two-sided p-value.

```
mean(null_dist\$trump_share < 0.44)
```

\#\# [1] 0.005

Rejecting the null

- Tests usually end with a decision to reject the null or not.
- Choose a threshold below which you'll reject the null.
- Test level α : the threshold for a test.
- Decision rule: "reject the null if the p-value is below α "
- Otherwise "fail to reject" or "retain", not "accept the null"
- Common (arbitrary) thresholds:
- $p \geq 0.1$ "not statistically significant"
- $p<0.05$ "statistically significant"
- $p<0.01$ "highly significant"

Testing errors

- A p-value of 0.05 says that data this extreme would only happen in 5% of repeated samples if the null were true.
- $\rightsquigarrow 5 \%$ of the time we'll reject the null when it is actually true.
- Test errors:

	H_{0} True	H_{0} False
Retain H_{0}	Awesome!	Type II error
Reject H_{0}	Type I error	Good stuff!

- Type I error because it's the worst
- "Convicting" an innocent null hypothesis
- Type II error less serious
- Missed out on an awesome finding

3/ Hypothesis testing using infer

GSS data from infer

library(infer)
 gss

\#\#		year	age sex	college	partyid	hompop	hours	income
\#\#		<dbl>	<dbl> <fct>	<fct>	<fct>	<dbl>	<dbl>	<ord>
\#\#	1	2014	36 male	degree	ind	3	50	\$25000~
\#\#	2	1994	34 female	no degree	rep	4	31	\$20000~
\#\#	3	1998	24 male	degree	ind	1	40	\$25000~
\#\#	4	1996	42 male	no degree	ind	4	40	\$25000~
\#\#	5	1994	31 male	degree	rep	2	40	\$25000~
\#\#	6	1996	32 female	no degree		4	53	\$25000~
\#\#	7	1990	48 female	no degree	dem	2	32	\$25000~
\#\#	8	2016	36 female	degree	ind	1	20	\$25000~
\#\#	9	2000	30 female	degree	rep	5	40	\$25000~
\#\#	10	1998	33 female	no degree	dem	2	40	\$15000~

\#\# \# i 490 more rows
\#\# \# i 3 more variables: class <fct>, finrela <fct>,
\#\# \# weight <dbl>

What is the average hours worked?

dplyr way:

```
gss |>
    summarize(mean(hours))
```

\#\# \# A tibble: 1×1
\#\#
‘mean(hours)`
\#\#
\#\# 1
infer way:

```
observed_mean <- gss |>
    specify(response = hours) |>
    calculate(stat = "mean")
observed_mean
```

\#\# Response: hours (numeric)
\#\# \# A tibble: 1×1
\#\# stat
\#\# <dbl>
\#\# 141.4

Hypothesis test

Could we get a mean this different from 40 hours if that was the true population average of hours worked?

Null and alternative:

$$
\begin{aligned}
& H_{0}: \text { population average hours }=40 \\
& H_{1}: \text { population average hours } \neq 40
\end{aligned}
$$

How do we perform this test using infer? The bootstrap!

Specifying the hypotheses

```
gss |>
    specify(response = hours) |>
    hypothesize(null = "point", mu = 40)
```

\#\# Response: hours (numeric)
\#\# Null Hypothesis: point
\#\# \# A tibble: 500 x 1
\#\# hours
\#\# <dbl>
\#\# 150
\#\# 231
\#\# 340
\#\# 40
\#\# 540
\#\# 63
\#\# 72
\#\# 80
\#\# 940
\#\# 1040
\#\# \# i 490 more rows

Generating the null distribution

We can use the bootstrap to determine how much variation there will be around 40 in the null distribution.

```
null_dist <- gss |>
    specify(response = hours) |>
    hypothesize(null = "point", mu = 40) |>
    generate(reps = 1000, type = "bootstrap") |>
    calculate(stat = "mean")
null_dist
```

\#\# Response: hours (numeric)
\#\# Null Hypothesis: point
\#\# \# A tibble: 1,000 x 2
\#\# replicate stat
\#\# <int> <dbl>

\#\#	1	1	40.3
\#\#	2	2	39.8
\#\#	3	3	40.0
\#\#	4	4	39.2
\#\#	5	5	40.3
\#\#	6	6	40.2
\#\#	7	7	40.4

Visualizing the p-value

We can visualize our bootstrapped null distribution and the p-value as a shaded region:

```
null_dist |>
    visualize() +
    shade_p_value(observed_mean,
        direction = "two-sided")
```

Simulation-Based Null Distribution

