Gov 50: 23. Inference with
Mathematical Models

Matthew Blackwell



1. Central limit theorem
2. Normal distribution

3. Using the Normal for inference

2/25
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Sampling distribution of the sample proportion

sample mean = population mean + chance error

X = u -+ chance error
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sample mean = population mean + chance error

X = u -+ chance error

Then X centered at u.

Spread: standard deviation of the sampling distribution is the standard error
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Spread of the sample mean

- Standard error: how big is the chance error on average?
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Spread of the sample mean

- Standard error: how big is the chance error on average?

+ This is the standard deviation of the estimator across repeated samples.
+ With random samples, we can get a formula for the SE for many
estimators.

- Standard error for the sample mean:

o population standard deviation

Vn v/sample size

SE =

+ Two components:

- Population SD: more spread of the variable in the population - more
spread of sample means
+ Size of the sample: larger sample - smaller spread of the sample means
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Midwest counties
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Midwest counties

Sampling distributions with n = 100
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Similarity in the bootstrap/null distributions

Simulation-Based Bootstrap Distribution
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Conditions for the CLT

% 16 18 2 2
Avergage Percent College

Central limit theorem: sums and means of random samples tend to be
normally distributed as the sample size grows.
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Conditions for the CLT

% 16 18 2 2
Avergage Percent College

Central limit theorem: sums and means of random samples tend to be
normally distributed as the sample size grows.

Many, many estimators will follow the CLT and have a normal distribution
and will be easier to use this to do inference rather than doing increasingly
complicated simulations.
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2/ Normal distribution



Normal distribution

X T d------e-

+ A normal distribution can be affect by two values:
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Normal distribution

X T d------e-

+ A normal distribution can be affect by two values:

- mean/expected value usually written as u
- variance written as o2 (standard deviation is o)
« Written X ~ N(u, o?).

- Standard normal distribution: mean 0 and standard deviation 1.
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Reentering and scaling the normal

+ How do transformations of a normal work?
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Reentering and scaling the normal

+ How do transformations of a normal work?
* Let X ~ N(u,o?) and c be a constant.
« IfZ=X+c,then Z ~ N(u+c,o?).

« Intuition: adding a constant to a normal shifts the distribution by that
constant.
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Z-scores of normals

+ These facts imply the z-score of a normal variable is a standard normal:

X —u
== B N0, 1
z="—E N1
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Z-scores of normals

+ These facts imply the z-score of a normal variable is a standard normal:

X —u
== B N0, 1
z="—E N1

« Subtract the mean and divide by the SD ~~ standard normal.
+ z-score measures how many SDs away from the mean a value of X is.
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Normal probability calculations

What's the probability of being below -1 for a standard normal?

This is the area under the normal curve, which pnorm( ) function gives us
this:

pnorm(-1, mean = 0, sd = 1)

## [1] 0.159
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Normal probability calculations

What's the probability of being above -1 for a standard normal?

Total area under the curve (1) minus the area below -1:

1 - pnorm(-1, mean = 0, sd = 1)

## [1] 0.841
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Normal quantiles

What if we want to know the opposite? What value of the normal distribution
puts 95% of the distribution below it?

This is a quantile and we can get it using gnorm( ):

gnorm(0.95, mean = 0, sd = 1)

## [1] 1.64
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3/ Using the Normal for
Inference



How popular is Joe Biden?

« What proportion of the public approves of Biden’s job as president?
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How popular is Joe Biden?

« What proportion of the public approves of Biden’s job as president?
- Latest Gallup poll:

+ Oct 2nd-23rd

+ 1,009 adult Americans

+ Telephone interviews

« Approve (37%), Disapprove (59%)
- Define rv. Y; for Biden approval:

+ Y, =1~ respondent i approves of Biden, 0 otherwise.

« p=P(Y; =1) the population proportion of Biden approvers.

« Y = 0.37 is the sample proportion.
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Standard errors for sample proportions

How variable will our sample proportion be? Depends on the standard error.
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Standard errors for sample proportions

How variable will our sample proportion be? Depends on the standard error.

Special rule for SEs of sample proportion Y:

SEforY =

p(1—p)  [(pop. proportion) x (1 — pop. proportion)
n sample size

Because we don't know p, we replace it with our best guess, Y:

SE_,/YA-Y)
n
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CLT for confidence intervals
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« How can we figure out a range of plausible chance errors?
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CLT for confidence intervals

Y — p = chance error

« How can we figure out a range of plausible chance errors?

- Find a range of plausible chance errors and add them to Y
+ With bootstrap, we used resampling to simulate chance error.

+ Central limit theorem implies

lev(p,M)

n

Chance error: Y — p is approximately normal with mean 0 and SE equal
to\/p(1—p)/n
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Chance errors

-3xSE -2xSE -SE 0 SE 2xSE 3xSE

If Y ~ N(p, SE?), then chance errors are Y — p ~ N(0, SE?) so:
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Chance errors

-1.64xSE 0 1.64x SE

If Y ~ N(p, SE?), then chance errors are Y — p ~ N(0, SE?) so:

+ = 90% of chance errors Y — p are within 1.64 SEs of the mean.
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-1.96xSE 0 1.96 x SE

If Y ~ N(p, SE?), then chance errors are Y — p ~ N(0, SE?) so:

+ = 90% of chance errors Y — p are within 1.64 SEs of the mean.
-+ = 95% of chance errors Y — p are within 1.96 SEs of the mean.
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-2.58xSE 0 2.58x SE

If Y ~ N(p, SE?), then chance errors are Y — p ~ N(0, SE?) so:

+ = 90% of chance errors Y — p are within 1.64 SEs of the mean.
-+ = 95% of chance errors Y — p are within 1.96 SEs of the mean.
+ 2 99% of chance errors Y — p are within 2.58 SEs of the mean.
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-2.58xSE 0 2.58x SE

If Y ~ N(p, SE?), then chance errors are Y — p ~ N(0, SE?) so:

+ = 90% of chance errors Y — p are within 1.64 SEs of the mean.
-+ = 95% of chance errors Y — p are within 1.96 SEs of the mean.
+ 2 99% of chance errors Y — p are within 2.58 SEs of the mean.

This implies we can build a 95% confidence interval with Y +1.96 x SE
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How did we get those values?

+ First, choose a confidence level.

+ What percent of chance errors do you want to count as “plausible”?
- Convention is 95%.

+ 100 x (1 — a)% confidence interval:

Cl=Y +z,, x SE

* In polling, +z,/, x SE is called the margin of error

* Z4 is the N(0, 1) z-score that would put or/2 in the upper tail:
* [P(—ZG/Q <Z< Za/z) =
* 90% Cl ~> o= 0.1~ z,, = 1.64

+ 95% Cl ~» o =0.05 v z,, = 1.96
*© 99% Cl ~» o= 0.01 ~» z,, = 2.58
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Standard normal z-scores in R

gnorm(x, lower.tail = FALSE) will find the quantile of N(0,1) that
puts x in the upper tail:
qnorm(0.05, lower.tail = FALSE)
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