Gov 50: 23. Inference with Mathematical Models

Matthew Blackwell

Harvard University

Roadmap

- 1. Central limit theorem
- 2. Normal distribution
- 3. Using the Normal for inference

1/ Central limit theorem

population distribution distribution and the stimator of the stimator \sim

Sampling distribution of the sample proportion

sample mean $=$ population mean $+$ chance error $\overline{X} = \mu +$ chance error

Sampling distribution of the sample proportion

sample mean $=$ population mean $+$ chance error $\overline{X} = \mu +$ chance error

Then \overline{X} centered at μ .

Sampling distribution of the sample proportion

sample mean $=$ population mean $+$ chance error $\overline{X} = \mu +$ chance error

Then \overline{X} centered at μ .

Spread: standard deviation of the sampling distribution is the **standard error**

• **Standard error**: how big is the chance error on average?

- **Standard error**: how big is the chance error on average?
	- This is the standard deviation of the estimator **across repeated samples**.

- **Standard error**: how big is the chance error on average?
	- This is the standard deviation of the estimator **across repeated samples**.
	- With random samples, we can get a formula for the SE for many estimators.

- **Standard error**: how big is the chance error on average?
	- This is the standard deviation of the estimator **across repeated samples**.
	- With random samples, we can get a formula for the SE for many estimators.
- Standard error for the sample mean:

$$
SE = \frac{\sigma}{\sqrt{n}} = \frac{\text{population standard deviation}}{\sqrt{\text{sample size}}}
$$

- **Standard error**: how big is the chance error on average?
	- This is the standard deviation of the estimator **across repeated samples**.
	- With random samples, we can get a formula for the SE for many estimators.
- Standard error for the sample mean:

$$
SE = \frac{\sigma}{\sqrt{n}} = \frac{\text{population standard deviation}}{\sqrt{\text{sample size}}}
$$

• Two components:

- **Standard error**: how big is the chance error on average?
	- This is the standard deviation of the estimator **across repeated samples**.
	- With random samples, we can get a formula for the SE for many estimators.
- Standard error for the sample mean:

$$
SE = \frac{\sigma}{\sqrt{n}} = \frac{\text{population standard deviation}}{\sqrt{\text{sample size}}}
$$

- Two components:
	- Population SD: more spread of the variable in the population \rightarrow more spread of sample means
- **Standard error**: how big is the chance error on average?
	- This is the standard deviation of the estimator **across repeated samples**.
	- With random samples, we can get a formula for the SE for many estimators.
- Standard error for the sample mean:

$$
SE = \frac{\sigma}{\sqrt{n}} = \frac{\text{population standard deviation}}{\sqrt{\text{sample size}}}
$$

- Two components:
	- Population SD: more spread of the variable in the population \rightarrow more spread of sample means
	- Size of the sample: larger sample \rightarrow smaller spread of the sample means

Population distributions:

Midwest counties

Sampling distributions with $n = 100$

More population spread \rightarrow higher SE

Similarity in the bootstrap/null distributions

 $50 -$

 $0 -$

 $\cdot \stackrel{\rightarrow}{0.4}$

 0.0

stat

 0.4°

Conditions for the CLT

Central limit theorem: sums and means of **random samples** tend to be normally distributed as the **sample size grows**.

Conditions for the CLT

Central limit theorem: sums and means of **random samples** tend to be normally distributed as the **sample size grows**.

Many, many estimators will follow the CLT and have a normal distribution and will be easier to use this to do inference rather than doing increasingly complicated simulations.

• A normal distribution can be affect by two values:

- A normal distribution can be affect by two values:
	- **mean/expected value** usually written as μ

- A normal distribution can be affect by two values:
	- **mean/expected value** usually written as μ
	- \cdot **variance** written as σ^2 (standard deviation is σ)

- A normal distribution can be affect by two values:
	- \cdot **mean/expected value** usually written as μ
	- \cdot **variance** written as σ^2 (standard deviation is σ)
	- Written $X \sim N(\mu, \sigma^2)$.

- A normal distribution can be affect by two values:
	- \cdot **mean/expected value** usually written as μ
	- \cdot **variance** written as σ^2 (standard deviation is σ)
	- Written $X \sim N(\mu, \sigma^2)$.
- **Standard normal distribution**: mean 0 and standard deviation 1.

• How do transformations of a normal work?

- How do transformations of a normal work?
- Let $X \sim N(\mu, \sigma^2)$ and c be a constant.

- How do transformations of a normal work?
- Let $X \sim N(\mu, \sigma^2)$ and c be a constant.
- If $Z = X + c$, then $Z \sim N(\mu + c, \sigma^2)$.

- How do transformations of a normal work?
- Let $X \sim N(\mu, \sigma^2)$ and c be a constant.
- If $Z = X + c$, then $Z \sim N(\mu + c, \sigma^2)$.
- Intuition: adding a constant to a normal shifts the distribution by that constant.

• Let $X \sim N(\mu, \sigma^2)$ and c be a constant.

- Let $X \sim N(\mu, \sigma^2)$ and c be a constant.
- If $Z = cX$, then $Z \sim N(c\mu, (c\sigma)^2)$.

- Let $X \sim N(\mu, \sigma^2)$ and c be a constant.
- If $Z = cX$, then $Z \sim N(c\mu, (c\sigma)^2)$.
- Intuition: multiplying a normal by a constant scales the mean and the variance.
Recentering and scaling the normal

- Let $X \sim N(\mu, \sigma^2)$ and c be a constant.
- If $Z = cX$, then $Z \sim N(c\mu, (c\sigma)^2)$.
- Intuition: multiplying a normal by a constant scales the mean and the variance.

• These facts imply the **z-score** of a normal variable is a standard normal:

$$
z=\frac{X-\mu}{\sigma}\sim \textit{N}(0,1)
$$

• These facts imply the **z-score** of a normal variable is a standard normal:

$$
z=\frac{X-\mu}{\sigma}\sim \textit{N}(0,1)
$$

• Subtract the mean and divide by the SD \rightsquigarrow standard normal.

• These facts imply the **z-score** of a normal variable is a standard normal:

$$
z=\frac{X-\mu}{\sigma}\sim \textit{N}(0,1)
$$

- Subtract the mean and divide by the SD \rightsquigarrow standard normal.
- \cdot z-score measures how many SDs away from the mean a value of X is.

Normal probability calculations

What's the probability of being below -1 for a standard normal?

This is the area under the normal curve, which pnorm() function gives us this:

 $pnorm(-1, mean = 0, sd = 1)$

[1] 0.159

Normal probability calculations

What's the probability of being **above** -1 for a standard normal?

Total area under the curve (1) minus the area below -1:

 $-$ pnorm(-1 , mean = 0 , sd = 1)

[1] 0.841

Normal quantiles

What if we want to know the opposite? What value of the normal distribution puts 95% of the distribution below it?

This is a **quantile** and we can get it using qnorm():

 $qnorm(0.95, mean = 0, sd = 1)$

[1] 1.64

3/ Using the Normal for inference

• What proportion of the public approves of Biden's job as president?

- What proportion of the public approves of Biden's job as president?
- Latest Gallup poll:

- What proportion of the public approves of Biden's job as president?
- Latest Gallup poll:
	- Oct 2nd-23rd

- What proportion of the public approves of Biden's job as president?
- Latest Gallup poll:
	- Oct 2nd-23rd
	- 1,009 adult Americans

- What proportion of the public approves of Biden's job as president?
- Latest Gallup poll:
	- Oct 2nd-23rd
	- 1,009 adult Americans
	- Telephone interviews

- What proportion of the public approves of Biden's job as president?
- Latest Gallup poll:
	- Oct 2nd-23rd
	- 1,009 adult Americans
	- Telephone interviews
	- Approve (37%), Disapprove (59%)

- What proportion of the public approves of Biden's job as president?
- Latest Gallup poll:
	- Oct 2nd-23rd
	- 1,009 adult Americans
	- Telephone interviews
	- Approve (37%), Disapprove (59%)
- Define r.v. Y_i for Biden approval:

- What proportion of the public approves of Biden's job as president?
- Latest Gallup poll:
	- Oct 2nd-23rd
	- 1,009 adult Americans
	- Telephone interviews
	- Approve (37%), Disapprove (59%)
- Define r.v. Y_i for Biden approval:
	- $Y_i = 1 \rightsquigarrow$ respondent *i* approves of Biden, 0 otherwise.

- What proportion of the public approves of Biden's job as president?
- Latest Gallup poll:
	- Oct 2nd-23rd
	- 1,009 adult Americans
	- Telephone interviews
	- Approve (37%), Disapprove (59%)
- Define r.v. Y_i for Biden approval:
	- $Y_i = 1 \rightsquigarrow$ respondent *i* approves of Biden, 0 otherwise.
	- $p = \mathbb{P}(Y_i = 1)$ the population proportion of Biden approvers.

- What proportion of the public approves of Biden's job as president?
- Latest Gallup poll:
	- Oct 2nd-23rd
	- 1,009 adult Americans
	- Telephone interviews
	- Approve (37%), Disapprove (59%)
- Define r.v. Y_i for Biden approval:
	- $Y_i = 1 \rightsquigarrow$ respondent *i* approves of Biden, 0 otherwise.
	- $p = P(Y_i = 1)$ the population proportion of Biden approvers.
	- $\overline{Y} = 0.37$ is the sample proportion.

Standard errors for sample proportions

How variable will our sample proportion be? Depends on the **standard error**.

Standard errors for sample proportions

How variable will our sample proportion be? Depends on the **standard error**.

Special rule for SEs of sample proportion \overline{Y} :

$$
SE \text{ for } \overline{Y} = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{(\text{pop. proportion}) \times (1-\text{pop. proportion})}{\text{sample size}}}
$$

Standard errors for sample proportions

How variable will our sample proportion be? Depends on the **standard error**.

Special rule for SEs of sample proportion \overline{Y} :

$$
SE \text{ for } \overline{Y} = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{(\text{pop. proportion}) \times (1-\text{pop. proportion})}{\text{sample size}}}
$$

Because we don't know p, we replace it with our best guess, \overline{Y} :

$$
\widehat{SE} = \sqrt{\frac{\overline{Y}(1-\overline{Y})}{n}}
$$

CLT for confidence intervals

$$
\overline{Y} - p = \text{chance error}
$$

• How can we figure out a range of plausible chance errors?

 $\overline{Y} - p =$ chance error

- How can we figure out a range of plausible chance errors?
	- Find a range of plausible chance errors and add them to \overline{Y}

 $\overline{Y} - p =$ chance error

- How can we figure out a range of plausible chance errors?
	- Find a range of plausible chance errors and add them to \overline{Y}
	- With **bootstrap**, we used resampling to simulate chance error.

 $\overline{Y} - p =$ chance error

- How can we figure out a range of plausible chance errors?
	- Find a range of plausible chance errors and add them to \overline{Y}
	- With **bootstrap**, we used resampling to simulate chance error.
- Central limit theorem implies

$$
\overline{Y} \approx N\left(p, \frac{p(1-p)}{n}\right)
$$

Chance error: $\overline{Y} - p$ is approximately normal with mean 0 and SE equal to $\sqrt{p(1-p)/n}$

Chance errors

If $\overline{Y}\sim {\sf N}(p,SE^2)$, then chance errors are $\overline{Y}-p\sim {\sf N}(0,SE^2)$ so:

• \approx 90% of chance errors $\overline{Y} - p$ are within 1.64 SEs of the mean.

- \approx 90% of chance errors \overline{Y} p are within 1.64 SEs of the mean.
- \approx 95% of chance errors $\overline{Y} p$ are within 1.96 SEs of the mean.

- \approx 90% of chance errors \overline{Y} p are within 1.64 SEs of the mean.
- \approx 95% of chance errors \overline{Y} p are within 1.96 SEs of the mean.
- \approx 99% of chance errors \overline{Y} p are within 2.58 SEs of the mean.

- \approx 90% of chance errors \overline{Y} p are within 1.64 SEs of the mean.
- \approx 95% of chance errors \overline{Y} p are within 1.96 SEs of the mean.
- \approx 99% of chance errors \overline{Y} p are within 2.58 SEs of the mean.

This implies we can build a 95% confidence interval with $\overline{Y} \pm 1.96 \times SE$

• First, choose a **confidence level**.

- First, choose a **confidence level**.
	- What percent of chance errors do you want to count as "plausible"?

- First, choose a **confidence level**.
	- What percent of chance errors do you want to count as "plausible"?
	- Convention is 95%.

- First, choose a **confidence level**.
	- What percent of chance errors do you want to count as "plausible"?
	- Convention is 95%.
- 100 \times (1 α)% confidence interval:

$$
CI = \overline{Y} \pm z_{\alpha/2} \times SE
$$

- First, choose a **confidence level**.
	- What percent of chance errors do you want to count as "plausible"?
	- Convention is 95%.
- 100 \times (1 α)% confidence interval:

$$
\mathit{CI} = \overline{Y} \pm z_{\alpha/2} \times \mathit{SE}
$$

• In polling, $\pm z_{\alpha/2} \times SE$ is called the **margin of error**

- First, choose a **confidence level**.
	- What percent of chance errors do you want to count as "plausible"?
	- Convention is 95%.
- 100 \times (1 α)% confidence interval:

$$
\mathit{CI} = \overline{Y} \pm z_{\alpha/2} \times \mathit{SE}
$$

- In polling, $\pm z_{\alpha/2} \times SE$ is called the **margin of error**
- $z_{\alpha/2}$ is the $N(0, 1)$ z-score that would put $\alpha/2$ in the upper tail:
- First, choose a **confidence level**.
	- What percent of chance errors do you want to count as "plausible"?
	- Convention is 95%.
- 100 \times (1 α)% confidence interval:

$$
\mathit{CI} = \overline{Y} \pm z_{\alpha/2} \times \mathit{SE}
$$

- In polling, $\pm z_{\alpha/2} \times SE$ is called the **margin of error**
- $z_{\alpha/2}$ is the $N(0, 1)$ z-score that would put $\alpha/2$ in the upper tail:

• ℙ(−/ < < /) =

- First, choose a **confidence level**.
	- What percent of chance errors do you want to count as "plausible"?
	- Convention is 95%.
- 100 \times (1 α)% confidence interval:

$$
\mathit{CI} = \overline{Y} \pm z_{\alpha/2} \times \mathit{SE}
$$

- In polling, $\pm z_{\alpha/2} \times SE$ is called the **margin of error**
- $z_{\alpha/2}$ is the $N(0, 1)$ z-score that would put $\alpha/2$ in the upper tail:

• ℙ(−/ < < /) =

• 90% CI $\rightsquigarrow \alpha = 0.1 \rightsquigarrow z_{\alpha/2} = 1.64$

- First, choose a **confidence level**.
	- What percent of chance errors do you want to count as "plausible"?
	- Convention is 95%.
- 100 \times $(1-\alpha)$ % confidence interval:

$$
CI = \overline{Y} \pm z_{\alpha/2} \times SE
$$

- In polling, $\pm z_{\alpha/2} \times SE$ is called the **margin of error**
- $z_{\alpha/2}$ is the $N(0, 1)$ z-score that would put $\alpha/2$ in the upper tail:
	- $\mathbb{P}(-z_{\alpha/2} < Z < z_{\alpha/2}) = \alpha$
	- 90% Cl $\rightsquigarrow \alpha = 0.1 \rightsquigarrow z_{\alpha/2} = 1.64$
	- 95% CI $\rightsquigarrow \alpha = 0.05 \rightsquigarrow z_{\alpha/2} = 1.96$

- First, choose a **confidence level**.
	- What percent of chance errors do you want to count as "plausible"?
	- Convention is 95%.
- 100 \times (1 α)% confidence interval:

$$
\mathit{CI} = \overline{Y} \pm z_{\alpha/2} \times \mathit{SE}
$$

- In polling, $\pm z_{\alpha/2} \times SE$ is called the **margin of error**
- $z_{\alpha/2}$ is the $N(0, 1)$ z-score that would put $\alpha/2$ in the upper tail:
	- $\mathbb{P}(-z_{\alpha/2} < Z < z_{\alpha/2}) = \alpha$
	- 90% CI $\rightsquigarrow \alpha = 0.1 \rightsquigarrow z_{\alpha/2} = 1.64$
	- 95% CI $\rightsquigarrow \alpha = 0.05 \rightsquigarrow z_{\alpha/2} = 1.96$
	- 99% CI $\rightsquigarrow \alpha = 0.01 \rightsquigarrow z_{\alpha/2} = 2.58$

qnorm(0.05, lower.tail = FALSE)

qnorm(0.05, lower.tail = FALSE)

[1] 1.64

qnorm(0.05, lower.tail = FALSE)

[1] 1.64

qnorm(0.025, lower.tail = FALSE)

 $qnorm(0.05, lower.tail = FALSE)$

[1] 1.64

qnorm(0.025, lower.tail = FALSE)

[1] 1.96

qnorm(0.05, lower.tail = FALSE)

[1] 1.64

qnorm(0.025, lower.tail = FALSE)

[1] 1.96

qnorm(0.005, lower.tail = FALSE)

```
qnorm(x, lower.tail = FALSE) will find the quantile of N(0, 1) that
puts x in the upper tail:
```
qnorm(0.05, lower.tail = FALSE)

[1] 1.64

qnorm(0.025, lower.tail = FALSE)

[1] 1.96

qnorm(0.005, lower.tail = FALSE)

[1] 2.58