Gov 50: 23. Inference with Mathematical Models

Matthew Blackwell

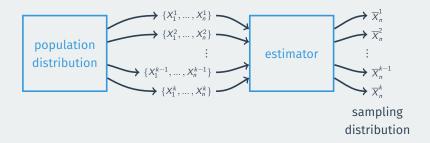
Harvard University

Roadmap

- 1. Central limit theorem
- 2. Normal distribution
- 3. Using the Normal for inference

1/ Central limit theorem

Sampling distribution, in pictures



Sampling distribution of the sample proportion

sample mean
$$=$$
 population mean $+$ chance error $\overline{X} = \mu + \text{chance error}$

Then \overline{X} centered at μ .

Spread: standard deviation of the sampling distribution is the **standard error**

Spread of the sample mean

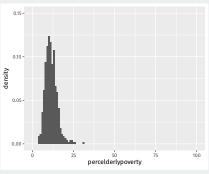
- Standard error: how big is the chance error on average?
 - This is the standard deviation of the estimator across repeated samples.
 - With random samples, we can get a formula for the SE for many estimators.
- · Standard error for the sample mean:

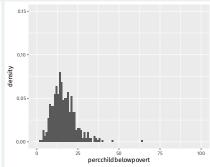
$$SE = \frac{\sigma}{\sqrt{n}} = \frac{\text{population standard deviation}}{\sqrt{\text{sample size}}}$$

- · Two components:
 - Population SD: more spread of the variable in the population → more spread of sample means
 - Size of the sample: larger sample → smaller spread of the sample means

Midwest counties

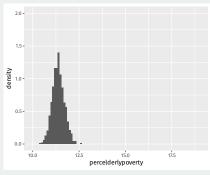
Population distributions:

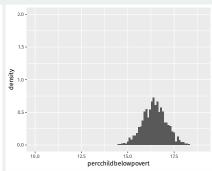




Midwest counties

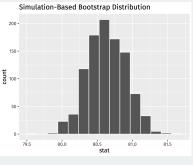
Sampling distributions with n = 100

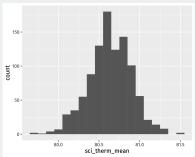


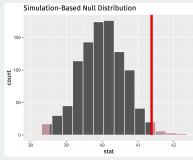


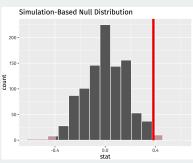
More population spread \rightarrow higher SE

Similarity in the bootstrap/null distributions

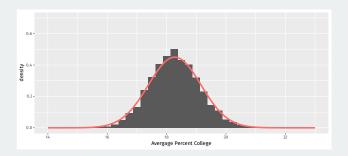








Conditions for the CLT

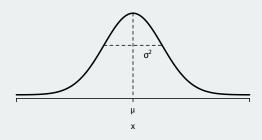


Central limit theorem: sums and means of **random samples** tend to be normally distributed as the **sample size grows**.

Many, many estimators will follow the CLT and have a normal distribution and will be easier to use this to do inference rather than doing increasingly complicated simulations.

2/ Normal distribution

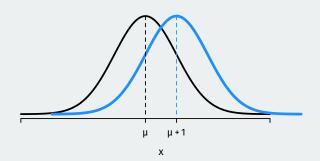
Normal distribution



- A normal distribution can be affect by two values:
 - mean/expected value usually written as μ
 - **variance** written as σ^2 (standard deviation is σ)
 - Written $X \sim N(\mu, \sigma^2)$.
- Standard normal distribution: mean 0 and standard deviation 1.

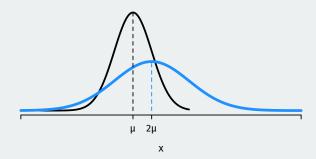
Reentering and scaling the normal

- · How do transformations of a normal work?
- Let $X \sim N(\mu, \sigma^2)$ and c be a constant.
- If Z = X + c, then $Z \sim N(\mu + c, \sigma^2)$.
- Intuition: adding a constant to a normal shifts the distribution by that constant.



Recentering and scaling the normal

- Let $X \sim N(\mu, \sigma^2)$ and c be a constant.
- If Z = cX, then $Z \sim N(c\mu, (c\sigma)^2)$.
- Intuition: multiplying a normal by a constant scales the mean and the variance.



Z-scores of normals

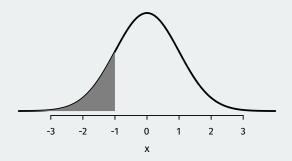
These facts imply the z-score of a normal variable is a standard normal:

$$z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

- Subtract the mean and divide by the SD → standard normal.
- z-score measures how many SDs away from the mean a value of X is.

Normal probability calculations

What's the probability of being below -1 for a standard normal?



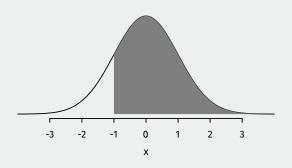
This is the area under the normal curve, which pnorm() function gives us this:

```
pnorm(-1, mean = 0, sd = 1)
```

[1] 0.159

Normal probability calculations

What's the probability of being above -1 for a standard normal?



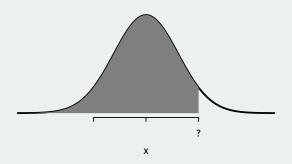
Total area under the curve (1) minus the area below -1:

1 -
$$pnorm(-1, mean = 0, sd = 1)$$

[1] 0.841

Normal quantiles

What if we want to know the opposite? What value of the normal distribution puts 95% of the distribution below it?



This is a **quantile** and we can get it using qnorm():

```
qnorm(0.95, mean = 0, sd = 1)
```

[1] 1.64

3/ Using the Normal for inference

How popular is Joe Biden?

- What proportion of the public approves of Biden's job as president?
- Latest Gallup poll:
 - Oct 2nd-23rd
 - 1,009 adult Americans
 - · Telephone interviews
 - · Approve (37%), Disapprove (59%)
- Define r.v. Y_i for Biden approval:
 - $Y_i = 1 \rightsquigarrow$ respondent *i* approves of Biden, 0 otherwise.
 - $p = \mathbb{P}(Y_i = 1)$ the population proportion of Biden approvers.
 - $\overline{Y} = 0.37$ is the sample proportion.

Standard errors for sample proportions

How variable will our sample proportion be? Depends on the **standard error**.

Special rule for SEs of sample proportion \overline{Y} :

$$\textit{SE} \; \text{for} \; \overline{Y} = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{(\text{pop. proportion}) \times (1-\text{pop. proportion})}{\text{sample size}}}$$

Because we don't know p, we replace it with our best guess, \overline{Y} :

$$\widehat{SE} = \sqrt{\frac{\overline{Y}(1 - \overline{Y})}{n}}$$

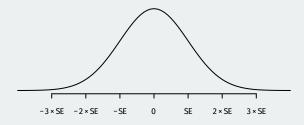
CLT for confidence intervals

$$\overline{Y} - p = \text{chance error}$$

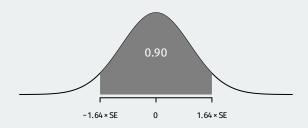
- How can we figure out a range of plausible chance errors?
 - Find a range of plausible chance errors and add them to \overline{Y}
 - With **bootstrap**, we used resampling to simulate chance error.
- · Central limit theorem implies

$$\overline{Y} \approx N\left(p, \frac{p(1-p)}{n}\right)$$

Chance error: $\overline{Y}-p$ is approximately normal with mean 0 and SE equal to $\sqrt{p(1-p)/n}$

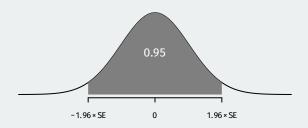


If $\overline{Y} \sim N(p, SE^2)$, then chance errors are $\overline{Y} - p \sim N(0, SE^2)$ so:



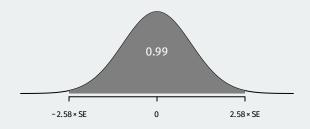
If $\overline{Y} \sim N(p, SE^2)$, then chance errors are $\overline{Y} - p \sim N(0, SE^2)$ so:

• \approx 90% of chance errors $\overline{Y} - p$ are within 1.64 SEs of the mean.



If $\overline{Y} \sim N(p, SE^2)$, then chance errors are $\overline{Y} - p \sim N(0, SE^2)$ so:

- \approx 90% of chance errors $\overline{Y} p$ are within 1.64 SEs of the mean.
- \approx 95% of chance errors $\overline{Y} p$ are within 1.96 SEs of the mean.



If $\overline{Y} \sim N(p, SE^2)$, then chance errors are $\overline{Y} - p \sim N(0, SE^2)$ so:

- \approx 90% of chance errors $\overline{Y} p$ are within 1.64 SEs of the mean.
- \approx 95% of chance errors $\overline{Y} p$ are within 1.96 SEs of the mean.
- \approx 99% of chance errors $\overline{Y}-p$ are within 2.58 SEs of the mean.

This implies we can build a 95% confidence interval with $\overline{Y} \pm 1.96 imes SE$

How did we get those values?

- First, choose a confidence level.
 - · What percent of chance errors do you want to count as "plausible"?
 - · Convention is 95%.
- $100 \times (1 \alpha)\%$ confidence interval:

$$CI = \overline{Y} \pm z_{\alpha/2} \times SE$$

- In polling, $\pm z_{\alpha/2} \times SE$ is called the **margin of error**
- $z_{\alpha/2}$ is the N(0,1) z-score that would put $\alpha/2$ in the upper tail:
 - $\mathbb{P}(-z_{\alpha/2} < Z < z_{\alpha/2}) = \alpha$
 - 90% CI $\rightsquigarrow \alpha = 0.1 \rightsquigarrow z_{\alpha/2} = 1.64$
 - 95% CI $\rightsquigarrow \alpha = 0.05 \rightsquigarrow z_{\alpha/2} = 1.96$
 - 99% CI $\rightsquigarrow \alpha = 0.01 \rightsquigarrow z_{\alpha/2} = 2.58$

Standard normal z-scores in R

```
qnorm(x, lower.tail = FALSE) will find the quantile of N(0,1) that
puts x in the upper tail:
qnorm(0.05, lower.tail = FALSE)

## [1] 1.64
qnorm(0.025, lower.tail = FALSE)

## [1] 1.96
qnorm(0.005, lower.tail = FALSE)
## [1] 2.58
```