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Roadmap

1. Confidence intervals for experiments

2. Hypothesis testing with the CLT

3. Two-sample tests
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1/ Confidence intervals for
experiments



Comparison between groups

• More interesting to compare across groups.

• Differences in public opinion across groups
• Difference between treatment and control groups.

• Bedrock of causal inference!
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Social pressure experiment

• Back to the Social Pressure Mailer GOTV example.

• Primary election in MI 2006

• Treatment group: postcards showing their own and their neighbors’
voting records.

• Sample size of treated group, 𝘯𝘛 = 𝟥𝟨𝟢 (artificially reducing sample size
to highlight the math)

• Control group: received nothing.

• Sample size of the control group, 𝘯𝘊 = 𝟣𝟪𝟫𝟢
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Outcomes

• Outcome: 𝘠𝘪 = 𝟣 if 𝘪 voted, 0 otherwise.

• Turnout rate (sample mean) in treated group, 𝘠 𝘛 = 𝟢.𝟥𝟩

• Turnout rate (sample mean) in control group, 𝘠 𝘊 = 𝟢.𝟥𝟢

• Estimated average treatment effect

ÂTE = 𝘠 𝘛 − 𝘠 𝘊 = 𝟢.𝟢𝟩
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Inference for the difference

• Parameter: population ATE 𝜇𝘛 − 𝜇𝘊

• 𝜇𝘛 : Turnout rate in the population if everyone received treatment.
• 𝜇𝘊 : Turnout rate in the population if everyone received control.

• Estimator: ÂTE = 𝘠 𝘛 − 𝘠 𝘊

By the CLT in large samples, we know that:

• 𝘠 𝘛 ≈ 𝘕 (𝜇𝘛 , 𝜇𝘛 (𝟣−𝜇𝘛 )
𝘯𝘊

)

• 𝘠 𝘊 ≈ 𝘕 (𝜇𝘊 , 𝜇𝘊 (𝟣−𝜇𝘊 )
𝘯𝘊

)

• ⇝ 𝘠 𝘛 − 𝘠 𝘊 ≈ 𝘕(𝜇𝘛 − 𝜇𝘊 , 𝘚𝘌 𝟤
diff)

But what is the 𝘚𝘌diff in this case?
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Spread of a difference in normals

If we take the difference between two independent normal r.v.s, what
happens to the spread?

-4 -2 0 2 4

Z X

X − Z

The spread of the difference is larger than the spread of the two variables
being differenced!
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Standard error for the estimated ATE

• SE of a difference in means adds the SEs for each group

𝘚𝘌diff = √𝘚𝘌 𝟤
𝘛 + 𝘚𝘌 𝟤

𝘊

• Using what we know about SEs with binary outcomes:

𝘚𝘌diff = √𝜇𝘛 (𝟣 − 𝜇𝘛 )
𝘯𝘵

+ 𝜇𝘊 (𝟣 − 𝜇𝘊 )
𝘯𝘊

• Chance errors 𝘠 𝘛 − 𝘠 𝘊 − (𝜇𝘛 − 𝜇𝘊 ) ≈ 𝘕(𝟢, 𝘚𝘌 𝟤
diff)

• We can construct a 95% CI with ÂTE± 𝟣.𝟫𝟨 × 𝘚𝘌diff
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Confidence intervals

But we don’t know 𝜇𝘛 or 𝜇𝘊 ! Plug in our sample proportions to estimate the
SE:

ŜEdiff = √𝘠 𝘛 (𝟣 − 𝘠 𝘛 )
𝘯𝘵

+ 𝘠 𝘊 (𝟣 − 𝘠 𝘊 )
𝘯𝘊

= √𝟢.𝟥𝟩 × 𝟢.𝟨𝟥
𝟥𝟨𝟢 + 𝟢.𝟥 × 𝟢.𝟩

𝟣𝟪𝟫𝟢 = 𝟢.𝟢𝟤𝟪

Now we can construct confidence intervals based on the CLT like last time:

𝘊𝘐𝟫𝟧 =ÂTE± 𝟣.𝟫𝟨 × ŜEdiff
=𝟢.𝟢𝟩 ± 𝟣.𝟫𝟨 × 𝟢.𝟢𝟤𝟪
=𝟢.𝟢𝟩 ± 𝟢.𝟢𝟧𝟦
=[𝟢.𝟢𝟣𝟨, 𝟢.𝟣𝟤𝟦]

Range of possibilities taking into account plausible chance errors.
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=𝟢.𝟢𝟩 ± 𝟣.𝟫𝟨 × 𝟢.𝟢𝟤𝟪
=𝟢.𝟢𝟩 ± 𝟢.𝟢𝟧𝟦
=[𝟢.𝟢𝟣𝟨, 𝟢.𝟣𝟤𝟦]

Range of possibilities taking into account plausible chance errors.

9 / 23



Confidence intervals

But we don’t know 𝜇𝘛 or 𝜇𝘊 ! Plug in our sample proportions to estimate the
SE:
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2/ Hypothesis testing with
the CLT



Statistical hypothesis testing

• Statistical hypothesis testing is a thought experiment.

• What would the world look like if we knew the truth?

• Conducted with several steps:

1. Specify your null and alternative hypotheses
2. Choose an appropriate test statistic and level of test 𝛼
3. Derive the reference distribution of the test statistic under the null.
4. Use this distribution to calculate the p-value.
5. Use p-value to decide whether to reject the null hypothesis or not

10 / 23



Statistical hypothesis testing

• Statistical hypothesis testing is a thought experiment.

• What would the world look like if we knew the truth?

• Conducted with several steps:

1. Specify your null and alternative hypotheses
2. Choose an appropriate test statistic and level of test 𝛼
3. Derive the reference distribution of the test statistic under the null.
4. Use this distribution to calculate the p-value.
5. Use p-value to decide whether to reject the null hypothesis or not

10 / 23



Statistical hypothesis testing

• Statistical hypothesis testing is a thought experiment.

• What would the world look like if we knew the truth?

• Conducted with several steps:

1. Specify your null and alternative hypotheses
2. Choose an appropriate test statistic and level of test 𝛼
3. Derive the reference distribution of the test statistic under the null.
4. Use this distribution to calculate the p-value.
5. Use p-value to decide whether to reject the null hypothesis or not

10 / 23



Statistical hypothesis testing

• Statistical hypothesis testing is a thought experiment.

• What would the world look like if we knew the truth?

• Conducted with several steps:

1. Specify your null and alternative hypotheses

2. Choose an appropriate test statistic and level of test 𝛼
3. Derive the reference distribution of the test statistic under the null.
4. Use this distribution to calculate the p-value.
5. Use p-value to decide whether to reject the null hypothesis or not

10 / 23



Statistical hypothesis testing

• Statistical hypothesis testing is a thought experiment.

• What would the world look like if we knew the truth?

• Conducted with several steps:

1. Specify your null and alternative hypotheses
2. Choose an appropriate test statistic and level of test 𝛼

3. Derive the reference distribution of the test statistic under the null.
4. Use this distribution to calculate the p-value.
5. Use p-value to decide whether to reject the null hypothesis or not

10 / 23



Statistical hypothesis testing

• Statistical hypothesis testing is a thought experiment.

• What would the world look like if we knew the truth?

• Conducted with several steps:

1. Specify your null and alternative hypotheses
2. Choose an appropriate test statistic and level of test 𝛼
3. Derive the reference distribution of the test statistic under the null.

4. Use this distribution to calculate the p-value.
5. Use p-value to decide whether to reject the null hypothesis or not

10 / 23



Statistical hypothesis testing

• Statistical hypothesis testing is a thought experiment.

• What would the world look like if we knew the truth?

• Conducted with several steps:

1. Specify your null and alternative hypotheses
2. Choose an appropriate test statistic and level of test 𝛼
3. Derive the reference distribution of the test statistic under the null.
4. Use this distribution to calculate the p-value.

5. Use p-value to decide whether to reject the null hypothesis or not

10 / 23



Statistical hypothesis testing

• Statistical hypothesis testing is a thought experiment.

• What would the world look like if we knew the truth?

• Conducted with several steps:

1. Specify your null and alternative hypotheses
2. Choose an appropriate test statistic and level of test 𝛼
3. Derive the reference distribution of the test statistic under the null.
4. Use this distribution to calculate the p-value.
5. Use p-value to decide whether to reject the null hypothesis or not

10 / 23



How popular is Joe Biden?

• What proportion of the public approves of Biden’s job as president?

• Example Gallup poll: 𝘠 = 𝟢.𝟦𝟤 with 𝘯 = 𝟪𝟣𝟤

• Could we reject the null that Biden’s national support is 50%?

• Null: 𝘏𝟢 ∶ 𝘱 = 𝟢.𝟧
• Alternative: 𝘏𝟣 ∶ 𝘱 ≠ 𝟢.𝟧
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CLT for hypothesis testing

Under the null, we know the distribution of 𝘠 :

𝘠 ≈ 𝘕 (𝘱, 𝘱(𝟣 − 𝘱)
𝘯 ) = 𝘕 (𝟢.𝟧, 𝟢.𝟧 × 𝟢.𝟧

𝟪𝟣𝟤 )

Using the rules of normal transformations if 𝘟 ∼ 𝘕(𝜇, 𝜎 𝟤):

𝘟 − 𝜇
𝜎 ∼ 𝘕(𝟢, 𝟣)

Then under the null, know the distribution of the following test statistic:

𝘡 = 𝘠 − 𝟢.𝟧
𝟢.𝟧/

√
𝟪𝟣𝟤 ≈ 𝘕(𝟢, 𝟣)
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p-values

What we observe:

𝘡obs = 𝘠 − 𝟢.𝟧
𝟢.𝟧/

√
𝟪𝟣𝟤 = 𝟢.𝟦𝟤 − 𝟢.𝟧

𝟢.𝟧/
√

𝟪𝟣𝟤

= − 𝟢.𝟢𝟪
𝟢.𝟢𝟣𝟪 = −𝟦.𝟦𝟦

Our observed sample proportion is 4.44 SEs away from 0.5 under the null.
What’s the probability of being that far away? (p-value)
pnorm(-4.44, mean = 0, sd = 1) + ## prob being below -4.44

(1 - pnorm(4.44, mean = 0, sd = 1)) ## prob being above 4.44

## [1] 0.000009
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Generalizing hypothesis tests

• Hypothesis testing using the CLT pretty much takes this general form no
matter what the estimator of interest is.

• Hypotheses: 𝘏𝟢 ∶ 𝜇 = 𝜇𝟢 (null guess), 𝘏𝟣 ∶ 𝜇 ≠ 𝜇𝟢

• Test statistic:

𝘡 = observed value− null guess
𝘚𝘌

= 𝘠 − 𝜇𝟢
𝘚𝘌

• The exact estimator for the standard error 𝘚𝘌 will depend on the
estimator of interest.

• Null distribution: 𝘡 ≈ 𝘕(𝟢, 𝟣) by the CLT

• p-value: probability of a standard normal being bigger than |𝘡obs|
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Rejecting regions

−1.96 0 1.96

• Reject if p-value is below 𝛼 (usually 0.05).

• We know 5% of the time 𝘡 will be bigger than 1.96.
• If 𝘡obs > 𝟣.𝟫𝟨 or 𝘡obs < −𝟣.𝟫𝟨, then the p-value must be below 0.05
• We can reject if |𝘡obs| > 𝟣.𝟫𝟨
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3/ Two-sample tests



Two-sample hypotheses

• Parameter: population ATE 𝜇𝘛 − 𝜇𝘊

• Goal: learn about the population difference in means

• Usual null hypothesis: no difference in population means (ATE = 0)

• Null: 𝘏𝟢 ∶ 𝜇𝘛 − 𝜇𝘊 = 𝟢
• Two-sided alternative: 𝘏𝟣 ∶ 𝜇𝘛 − 𝜇𝘊 ≠ 𝟢

• In words: are the differences in sample means just due to chance?
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Difference-in-means review

• Sample turnout rates: 𝘠 𝘛 = 𝟢.𝟥𝟩, 𝘠 𝘊 = 𝟢.𝟥𝟢

• Sample sizes: 𝘯𝘛 = 𝟥𝟨𝟢, 𝘯𝘊 = 𝟣𝟪𝟫𝟢

• Estimator is the sample difference-in-means:

ÂTE = 𝘠 𝘛 − 𝘠 𝘊 = 𝟢.𝟢𝟩

• Estimated SE for the difference in means:

ŜEdiff = √𝘠 𝘛 (𝟣 − 𝘠 𝘛 )
𝘯𝘛

+ 𝘠 𝘊 (𝟣 − 𝘠 𝘊 )
𝘯𝘊

= 𝟢.𝟢𝟤𝟪
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CLT again and again
Earlier we saw that by the CLT we have:

𝘠 𝘛 − 𝘠 𝘊 ≈ 𝘕(𝜇𝘛 − 𝜇𝘊 , SE𝟤
diff)

We can use Z-scores to get a test statistic:

𝘡 = (𝘠 𝘛 − 𝘠 𝘊 ) − (𝜇𝘛 − 𝜇𝘊 )
SEdiff

∼ 𝘕(𝟢, 𝟣)

Same general form of the test statistic as with one sample mean/proportion:

observed - null guess
SE
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The usual null of no difference

• Null hypothesis: 𝘏𝟢 ∶ 𝜇𝘛 − 𝜇𝘊 = 𝟢

• Test statistic:

𝘡 = (𝘠 𝘛 − 𝘠 𝘊 ) − (𝜇𝘛 − 𝜇𝘊 )
SEdiff

= (𝘠 𝘛 − 𝘠 𝘊 ) − 𝟢
SEdiff

• In large samples, we can replace true SE with an estimate:

ŜEdiff = √ŜE
𝟤
𝘛 + ŜE

𝟤
𝘊
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𝟤
𝘊

21 / 23



The usual null of no difference

• Null hypothesis: 𝘏𝟢 ∶ 𝜇𝘛 − 𝜇𝘊 = 𝟢

• Test statistic:

𝘡 = (𝘠 𝘛 − 𝘠 𝘊 ) − (𝜇𝘛 − 𝜇𝘊 )
SEdiff

= (𝘠 𝘛 − 𝘠 𝘊 ) − 𝟢
SEdiff

• In large samples, we can replace true SE with an estimate:
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Calculating p-values

• Finally! Our test statistic in this sample:

𝘡 = 𝘠 𝘛 − 𝘠 𝘊
ŜEdiff

= 𝟢.𝟢𝟩
𝟢.𝟢𝟤𝟪 = 𝟤.𝟧

• p-value based on a two-sided test: probability of getting a difference in
means this big (or bigger) if the null hypothesis were true

• Lower p-values⇝ stronger evidence against the null.
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2 * pnorm(2.5, lower.tail = FALSE)

## [1] 0.0124
23 / 23


	Confidence intervals for experiments
	Hypothesis testing with the CLT
	Two-sample tests

