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Comparison between groups

+ More interesting to compare across groups.

+ Differences in public opinion across groups
+ Difference between treatment and control groups.

+ Bedrock of causal inference!
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Social pressure experiment

+ Back to the Social Pressure Mailer GOTV example.
+ Primary election in Ml 2006

 Treatment group: postcards showing their own and their neighbors’
voting records.

+ Sample size of treated group, ny = 360 (artificially reducing sample size
to highlight the math)

« Control group: received nothing.

- Sample size of the control group, n. = 1890
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- Outcome: Y; =1 if i voted, 0 otherwise.
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- Outcome: Y; =1 if i voted, 0 otherwise.
« Turnout rate (sample mean) in treated group, Y = 0.37
+ Turnout rate (sample mean) in control group, Y = 0.30

- Estimated average treatment effect

ATE=Y;— Y, =007
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Inference for the difference

+ Parameter: population ATE u; — uc

- w7t Turnout rate in the population if everyone received treatment.
- uc: Turnout rate in the population if everyone received control.

- Estimator: ATE= Y, — Y

By the CLT in large samples, we know that:
*YrxN (.UT> %;HT))
e VT *Vc ~ N(ur — e, SEgiff)

But what is the SEy in this case?
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Spread of a difference in normals

If we take the difference between two independent normal r.v.s, what
happens to the spread?

The spread of the difference is larger than the spread of the two variables
being differenced!
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Standard error for the estimated ATE

- SE of a difference in means adds the SEs for each group

SEdiff = \/ SE%— + SE%
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Standard error for the estimated ATE

- SE of a difference in means adds the SEs for each group
SEdiff = \/ SE%— + SE%

+ Using what we know about SEs with binary outcomes:

SEyr — \/ur(l —Hr) | #c(—Hc)
; g

- Chanceerrors Y — Y — (ur —pc) = N(0, SE3¢)

- We can construct a 95% Cl with ATE + 1.96 x SEgie
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Confidence intervals

But we don't know u or u.! Plug in our sample proportions to estimate the
SE:

= Yr(1-Y Yc(l-Y
SEdm:\/ r(1=Yp) Y=Y

ny ne

= 0.028

\/0.37 x 0.63 N 0.3x0.7
360 1890
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Confidence intervals

But we don't know u or u.! Plug in our sample proportions to estimate the
SE:

= Yr(1-Y Yc(1-Y
SEdm:\/ r(1=Yp) Y=Y

0.37 x0.63 0.3 x0.7
— = O. 2
\/ 360 * 1890 028
Now we can construct confidence intervals based on the CLT like last time:

Clys =ATE + 1.96 x SEgier
—0.07 + 1.96 x 0.028
=0.07 + 0.054
—[0.016, 0.124]

Range of possibilities taking into account plausible chance errors.
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2/ Hypothesis testing with
the CLT



Statistical hypothesis testing

« Statistical hypothesis testing is a thought experiment.
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Statistical hypothesis testing

« Statistical hypothesis testing is a thought experiment.
- What would the world look like if we knew the truth?
+ Conducted with several steps:

Specify your null and alternative hypotheses

Choose an appropriate test statistic and level of test

Derive the reference distribution of the test statistic under the null.
Use this distribution to calculate the p-value.

Y =
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Statistical hypothesis testing

« Statistical hypothesis testing is a thought experiment.
+ What would the world look like if we knew the truth?

+ Conducted with several steps:

Specify your null and alternative hypotheses

Choose an appropriate test statistic and level of test

Derive the reference distribution of the test statistic under the null.
Use this distribution to calculate the p-value.

Use p-value to decide whether to reject the null hypothesis or not

N
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How popular is Joe Biden?

+ What proportion of the public approves of Biden’s job as president?
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How popular is Joe Biden?

+ What proportion of the public approves of Biden’s job as president?
+ Example Gallup poll: Y = 0.42 with n = 812

+ Could we reject the null that Biden's national support is 50%?

« Null: Hy: p=10.5
« Alternative: H, : p # 0.5
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CLT for hypothesis testing

Under the null, we know the distribution of Y:

v p(l—p)\ ( 0.5><O.5>
YNN(p,in )_N 0.5, =

Using the rules of normal transformations if X ~ N(u, o?):

X—u
2 N1
= (0,1)

Then under the null, know the distribution of the following test statistic:

Y —05

Z=——" ~N(,1
0.5//812 ©.1)
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What we observe:
o Y—-05 042-05
" 05/y812  0.5/1/812

0.08
— 0 _ a4
0.018
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What we observe:

7 Y—-05 042-05
" 05/y812  0.5/1/812

_ 0.08 _ a4
0.018

Our observed sample proportion is 4.44 SEs away from 0.5 under the null.
What'’s the probability of being that far away? (p-value)

pnorm(-4.44, mean = 0, sd 1) +

(1 - pnorm(4.44, mean = 0,

## [1] 0.000009
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Generalizing hypothesis tests
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matter what the estimator of interest is.
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Generalizing hypothesis tests

+ Hypothesis testing using the CLT pretty much takes this general form no
matter what the estimator of interest is.

+ Hypotheses: H, : u = g (null guess), Hy = u # g

« Test statistic:

__observed value — null guess Y —
SE SE

V4

- The exact estimator for the standard error SE will depend on the
estimator of interest.

+ Null distribution: Z ~ N(0, 1) by the CLT

- p-value: probability of a standard normal being bigger than |Z,.|

16/23



Rejecting regions

-1.9 0 1.96

- Reject if p-value is below o (usually 0.05).

17/23



Rejecting regions

-1.9 0 1.96

- Reject if p-value is below o (usually 0.05).

+ We know 5% of the time Z will be bigger than 1.96.

17/23



Rejecting regions

-1.9 0 1.96

- Reject if p-value is below o (usually 0.05).

+ We know 5% of the time Z will be bigger than 1.96.
« If Zyps > 1.96 Or Z,,¢ < —1.96, then the p-value must be below 0.05

17/23



Rejecting regions

-1.9 0 1.96

- Reject if p-value is below o (usually 0.05).

+ We know 5% of the time Z will be bigger than 1.96.
« If Zyps > 1.96 Or Z,,¢ < —1.96, then the p-value must be below 0.05
+ We can reject if | Z,ps| > 1.96
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3/ Two-sample tests



Two-sample hypotheses

+ Parameter: population ATE u; — uc
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Two-sample hypotheses

+ Parameter: population ATE u; — uc
+ Goal: learn about the population difference in means

« Usual null hypothesis: no difference in population means (ATE = 0)

« Null: Hy : ur —pe =0
- Two-sided alternative: H; : yr —uc #0

+ In words: are the differences in sample means just due to chance?
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Difference-in-means review

- Sample turnout rates: Y, = 0.37, Y = 0.30
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Difference-in-means review

- Sample turnout rates: Y, = 0.37, Y = 0.30
- Sample sizes: ny = 360, n- = 1890

+ Estimator is the sample difference-in-means:

—

ATE=Y;— Y, =007

+ Estimated SE for the difference in means:

§\Ediff _ \/YT(]' _ YT) + YC(]' _ YC) _ 0028
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CLT again and again
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CLT again and again

Earlier we saw that by the CLT we have:

Y;—Y¢~ N(ur — e, SEair)

We can use Z-scores to get a test statistic:

7= (VT —Vc) — (M7 —H¢)
SEgifr

~ N(0,1)
Same general form of the test statistic as with one sample mean/proportion:

observed - null guess
SE
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The usual null of no difference

+ Null hypothesis: Hy : ur —uc =0
+ Test statistic:

7 — (VT —Vc) — (U —H¢) _ (VT —Vc) -0
SEgifr SE it

« In large samples, we can replace true SE with an estimate:

—~ | ~2 —~2
SEdiff = SET + SEC
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Calculating p-values

« Finally! Our test statistic in this sample:

_Yr =Y _ 007 _ ¢

Z - = =
SEgi 0.028
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Calculating p-values

« Finally! Our test statistic in this sample:

7_ YTA_ Yc _ 0.027 _25
SEgi 0.028

+ p-value based on a two-sided test: probability of getting a difference in
means this big (or bigger) if the null hypothesis were true

+ Lower p-values ~~ stronger evidence against the null.
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0.3
0.2 1
0.1
0.006 0.006
0.0 4 e o
Zops=—25 Zops =25
r T T T 1
-4 -2 0 2 4

2 % pnorm(2.5, lower.tail = FALSE)

## [1] 0.0124
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