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Roadmap

1. Inference for linear regression

2. Presenting OLS regressions

3. Wrapping up the class
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1/ Inference for linear
regression



Data

• Do political institutions promote economic development?

• Famous paper on this: Acemoglu, Johnson, and Robinson (2001)
• Relationship between strength of property rights in a country and GDP.

• Data:

Name Description
shortnam three-letter country code
africa indicator for if the country is in Africa
asia indicator for if country is in Asia
avexpr strength of property rights (protection against ex-

propriation)
logpgp95 log GDP per capita
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Loading the data

library(gov50data)
head(ajr)

## # A tibble: 6 x 15
## shortnam africa lat_abst malfal94 avexpr logpgp95 logem4
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AFG 0 0.367 0.00372 NA NA 4.54
## 2 AGO 1 0.137 0.950 5.36 7.77 5.63
## 3 ARE 0 0.267 0.0123 7.18 9.80 NA
## 4 ARG 0 0.378 0 6.39 9.13 4.23
## 5 ARM 0 0.444 0 NA 7.68 NA
## 6 AUS 0 0.300 0 9.32 9.90 2.15
## # i 8 more variables: asia <dbl>, yellow <dbl>,
## # baseco <dbl>, leb95 <dbl>, imr95 <dbl>, meantemp <dbl>,
## # lt100km <dbl>, latabs <dbl>
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Simple linear regression model

• We are going to assume a linear model:

𝘠𝘪 = 𝛽𝟢 + 𝛽𝟣𝘟𝘪 + 𝜀𝘪

• Data:

• Dependent variable: 𝘠𝘪
• Independent variable: 𝘟𝘪

• Population parameters:

• Population intercept: 𝛽𝟢
• Population slope: 𝛽𝟣

• Error/disturbance: 𝜖𝘪

• Represents all unobserved error factors influencing 𝘠𝘪 other than 𝘟𝘪 .
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Least squares

• How do we figure out the best line to draw?

• Alt question: how do we figure out 𝛽𝟢 and 𝛽𝟣?
• ( ̂𝛽𝟢, ̂𝛽𝟣): estimated coefficients.
• 𝘠𝘪 = ̂𝛽𝟢 + ̂𝛽𝟣𝘟𝘪 : predicted/fitted value.
• ̂𝜖𝘪 = 𝘠𝘪 − 𝘠 : residual.

• Get these estimates by the least squares method.

• Minimize the sum of the squared residuals (SSR):

SSR =
𝘯

∑
𝘪=𝟣

̂𝜖𝟤
𝘪 =

𝘯
∑
𝘪=𝟣

(𝘠𝘪 − ̂𝛽𝟢 − ̂𝛽𝟣𝘟𝘪 )𝟤
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Estimators

• Least squares is an estimator

• it’s a machine that we plug data into and we get out estimates.

OLS

Sample 1: {(𝘠𝟣, 𝘟𝟣), … , (𝘠𝘯, 𝘟𝘯)} ( ̂𝛽𝟢, ̂𝛽𝟣)𝟣

Sample 2: {(𝘠𝟣, 𝘟𝟣), … , (𝘠𝘯, 𝘟𝘯)} ( ̂𝛽𝟢, ̂𝛽𝟣)𝟤

⋮ ⋮
Sample 𝘬 − 𝟣: {(𝘠𝟣, 𝘟𝟣), … , (𝘠𝘯, 𝘟𝘯)} ( ̂𝛽𝟢, ̂𝛽𝟣)𝘬−𝟣

Sample 𝘬 : {(𝘠𝟣, 𝘟𝟣), … , (𝘠𝘯, 𝘟𝘯)} ( ̂𝛽𝟢, ̂𝛽𝟣)𝘬

• Just like the sample mean or difference in sample means

• ⇝ sampling distribution with a standard error, etc.
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Simulation procedure

• Let’s take a simulation approach to demonstrate:

• Pretend that the AJR data represents the population of interest
• See how the line varies from sample to sample

1. Randomly sample 𝘯 = 𝟥𝟢 countries w/ replacement using sample()

2. Use lm() to calculate the OLS estimates of the slope and intercept

3. Plot the estimated regression line
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Population regression
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Randomly sample from AJR
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Sampling distribution of OLS

• Estimated slope and intercept vary between samples, centered on
truth.

Sampling distribution of intercepts
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Properties of OLS

• ̂𝛽𝟢 and ̂𝛽𝟣 are random variables

• Are they on average equal to the true values (bias)?
• How spread out are they around their center (variance)?

• Under minimal conditions, ̂𝛽𝟢 and ̂𝛽𝟣 are unbiased for the population
line of best fit, but…

• This might be misleading if the true relationship is nonlinear.
• May not represent a causal effect unless causal assumptions hold.
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Standard errors of OLS
R will also calculate an estimate of the standard error: ŜE( ̂𝛽𝟣)

Default estimators for the SEs assume homoskedasticity or that the spread
around the regression line is the same for all values of the independent
variables.
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Relatively easy fixes exist, but beyond the scope of this class.
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Tests and CIs for regression

• ( ̂𝛽𝟢, ̂𝛽𝟣) can be written as weighted averages of the outcome…

• Which means they follow the Central Limit Theorem!

• BAM! 95% confidence intervals: ̂𝛽𝟣 ± 𝟣.𝟫𝟨 × ŜE( ̂𝛽𝟣)

• BOOM! Hypothesis tests:

• Null hypothesis: 𝘏𝟢 ∶ 𝛽𝟣 = 𝛽∗
𝟣

• Test statistic: ̂𝛽𝟣−𝛽∗
𝟣

ŜE( ̂𝛽𝟣) ∼ 𝘕(𝟢, 𝟣)
• Usual test is of 𝛽𝟣 = 𝟢.
• ̂𝛽𝟣 is statistically significant if its p-value from this test is below some
threshold (usually 0.05)
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• BOOM! Hypothesis tests:

• Null hypothesis: 𝘏𝟢 ∶ 𝛽𝟣 = 𝛽∗
𝟣

• Test statistic: ̂𝛽𝟣−𝛽∗
𝟣

ŜE( ̂𝛽𝟣) ∼ 𝘕(𝟢, 𝟣)
• Usual test is of 𝛽𝟣 = 𝟢.
• ̂𝛽𝟣 is statistically significant if its p-value from this test is below some
threshold (usually 0.05)

21 / 36



Tests and CIs for regression

• ( ̂𝛽𝟢, ̂𝛽𝟣) can be written as weighted averages of the outcome…

• Which means they follow the Central Limit Theorem!

• BAM! 95% confidence intervals: ̂𝛽𝟣 ± 𝟣.𝟫𝟨 × ŜE( ̂𝛽𝟣)
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ajr.reg <- lm(logpgp95 ~ avexpr, data = ajr)
summary(ajr.reg)

##
## Call:
## lm(formula = logpgp95 ~ avexpr, data = ajr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.902 -0.316 0.138 0.422 1.441
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.6261 0.3006 15.4 <2e-16 ***
## avexpr 0.5319 0.0406 13.1 <2e-16 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.718 on 109 degrees of freedom
## (52 observations deleted due to missingness)
## Multiple R-squared: 0.611, Adjusted R-squared: 0.608
## F-statistic: 171 on 1 and 109 DF, p-value: <2e-16
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Using broom with regression

library(broom)
tidy(ajr.reg)

## # A tibble: 2 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 4.63 0.301 15.4 4.28e-29
## 2 avexpr 0.532 0.0406 13.1 4.16e-24
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Multiple regression

• Correlation doesn’t imply causation

• Omitted variables⇝ violation of exogeneity

• You can adjust for multiple confounding variables:

𝘠𝘪 = 𝛽𝟢 + 𝛽𝟣𝘟𝘪𝟣 + 𝛽𝟤𝘟𝘪𝟤 + ⋯ + 𝛽𝘱𝘟𝘪𝘱 + 𝜖𝘪

• Interpretation of 𝛽𝘫 : an increase in the outcome associated with a
one-unit increase in 𝘟𝘪 𝘫 when other variables don’t change their values

• Inference:

• Confidence intervals constructed exactly the same for ̂𝛽𝘫
• Hypothesis tests done exactly the same for ̂𝛽𝘫
• ⇝ interpret p-values the same as before.
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Using knitr::kable to produce tables

ajr.multreg <- lm(logpgp95 ~ avexpr + lat_abst + asia + africa, data = ajr)
tidy(ajr.multreg) |>
knitr::kable(digits = 3)

term estimate std.error statistic p.value

(Intercept) 5.840 0.339 17.239 0.000
avexpr 0.394 0.050 7.843 0.000
lat_abst 0.312 0.444 0.703 0.484
asia -0.170 0.153 -1.108 0.270
africa -0.930 0.165 -5.628 0.000
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2/ Presenting OLS
regressions



Regression tables

• In papers, you’ll often find regression tables that have several models.

• Each column is a different regression:

• Might differ by independent variables, dependent variables, sample, etc.

• Standard errors, p-values, sample size, and 𝘙𝟤 may be reported as well.
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AJR regression table
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modelsummary() to produce tables

We can use modelsummary() to produce a table. It takes a list of outputs
from lm and aligns them in the correct way.
modelsummary::modelsummary(list(ajr.reg, ajr.multreg))
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Output
modelsummary::modelsummary(list(ajr.reg, ajr.multreg))

(1) (2)

(Intercept) 𝟦.𝟨𝟤𝟨 𝟧.𝟪𝟦𝟢
(𝟢.𝟥𝟢𝟣) (𝟢.𝟥𝟥𝟫)

avexpr 𝟢.𝟧𝟥𝟤 𝟢.𝟥𝟫𝟦
(𝟢.𝟢𝟦𝟣) (𝟢.𝟢𝟧𝟢)

lat_abst 𝟢.𝟥𝟣𝟤
(𝟢.𝟦𝟦𝟦)

asia −𝟢.𝟣𝟩𝟢
(𝟢.𝟣𝟧𝟥)

africa −𝟢.𝟫𝟥𝟢
(𝟢.𝟣𝟨𝟧)

Num.Obs. 𝟣𝟣𝟣 𝟣𝟣𝟣
R2 𝟢.𝟨𝟣𝟣 𝟢.𝟩𝟣𝟥
R2 Adj. 𝟢.𝟨𝟢𝟪 𝟢.𝟩𝟢𝟥
AIC 𝟤𝟦𝟧.𝟦 𝟤𝟣𝟩.𝟨
BIC 𝟤𝟧𝟥.𝟧 𝟤𝟥𝟥.𝟪
Log.Lik. −𝟣𝟣𝟫.𝟩𝟢𝟫 −𝟣𝟢𝟤.𝟩𝟫𝟧
RMSE 𝟢.𝟩𝟣 𝟢.𝟨𝟣 29 / 36



Cleaning up the goodness of fit statistics
modelsummary::modelsummary(
list(ajr.reg, ajr.multreg),
gof_map = c("nobs", "r.squared", "adj.r.squared"))

(1) (2)

(Intercept) 𝟦.𝟨𝟤𝟨 𝟧.𝟪𝟦𝟢
(𝟢.𝟥𝟢𝟣) (𝟢.𝟥𝟥𝟫)

avexpr 𝟢.𝟧𝟥𝟤 𝟢.𝟥𝟫𝟦
(𝟢.𝟢𝟦𝟣) (𝟢.𝟢𝟧𝟢)

lat_abst 𝟢.𝟥𝟣𝟤
(𝟢.𝟦𝟦𝟦)

asia −𝟢.𝟣𝟩𝟢
(𝟢.𝟣𝟧𝟥)

africa −𝟢.𝟫𝟥𝟢
(𝟢.𝟣𝟨𝟧)

Num.Obs. 𝟣𝟣𝟣 𝟣𝟣𝟣
R2 𝟢.𝟨𝟣𝟣 𝟢.𝟩𝟣𝟥
R2 Adj. 𝟢.𝟨𝟢𝟪 𝟢.𝟩𝟢𝟥
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Cleaning up the variable names

We can also map the variable names to more readable names using the
coef_map argument. But first, we should do the mapping in a vector. Any
term omitted from this vector will be omitted from the table

var_labels <- c(
"avexpr" = "Avg. Expropriation Risk",
"lat_abst" = "Abs. Value of Latitude",
"asia" = "Asian country",
"africa" = "African country"

)
var_labels

## avexpr lat_abst
## "Avg. Expropriation Risk" "Abs. Value of Latitude"
## asia africa
## "Asian country" "African country"
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Nice table
modelsummary::modelsummary(
list(ajr.reg, ajr.multreg),
coef_map = var_labels,
gof_map = c("nobs", "r.squared", "adj.r.squared"))

(1) (2)

Avg. Expropriation Risk 𝟢.𝟧𝟥𝟤 𝟢.𝟥𝟫𝟦
(𝟢.𝟢𝟦𝟣) (𝟢.𝟢𝟧𝟢)

Abs. Value of Latitude 𝟢.𝟥𝟣𝟤
(𝟢.𝟦𝟦𝟦)

Asian country −𝟢.𝟣𝟩𝟢
(𝟢.𝟣𝟧𝟥)

African country −𝟢.𝟫𝟥𝟢
(𝟢.𝟣𝟨𝟧)

Num.Obs. 𝟣𝟣𝟣 𝟣𝟣𝟣
R2 𝟢.𝟨𝟣𝟣 𝟢.𝟩𝟣𝟥
R2 Adj. 𝟢.𝟨𝟢𝟪 𝟢.𝟩𝟢𝟥
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3/ Wrapping up the class



Big takeaways

Important takeaways from the course:

1. Data wrangling and data visualizations are really important skills that
you now have!

2. Causality is hugely important in the world but difficult to establish.

3. Really important to understand and assess statistical uncertainty when
working with data.
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I’m really proud of you!

You’ve come a long way! Hopefully the tools you learned in this course will
help you throughout your life and career!
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What next?

• Gov 51 with Naijia Liu:

• A more in-depth review of some ideas from Gov 50 including causality
and regression plus new models (maybe some machine learning).

• Really helpful for students looking to write senior theses.

• Only need 3 more classes to finish the data science track in Gov!

• More theoretical stats side: Stat 110/111

• More CS approach to data science: CS109 (Data Science 1)
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Thanks!

Fill out your evaluations!
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