# Gov 50: 25. Inference for Linear Regression

Matthew Blackwell

Harvard University

- 1. Inference for linear regression
- 2. Presenting OLS regressions
- 3. Wrapping up the class

**1/** Inference for linear regression



• Do political institutions promote economic development?



- Do political institutions promote economic development?
  - Famous paper on this: Acemoglu, Johnson, and Robinson (2001)



- Do political institutions promote economic development?
  - Famous paper on this: Acemoglu, Johnson, and Robinson (2001)
  - Relationship between strength of property rights in a country and GDP.



- Do political institutions promote economic development?
  - Famous paper on this: Acemoglu, Johnson, and Robinson (2001)
  - Relationship between strength of property rights in a country and GDP.
- Data:



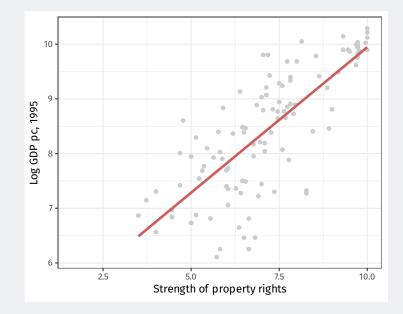
- Do political institutions promote economic development?
  - Famous paper on this: Acemoglu, Johnson, and Robinson (2001)
  - Relationship between strength of property rights in a country and GDP.
- Data:

| Name     | Description                                         |
|----------|-----------------------------------------------------|
| shortnam | three-letter country code                           |
| africa   | indicator for if the country is in Africa           |
| asia     | indicator for if country is in Asia                 |
| avexpr   | strength of property rights (protection against ex- |
|          | propriation)                                        |
| logpgp95 | log GDP per capita                                  |

#### library(gov50data) head(ajr)

| ## | #                                           | A tibble:   | : 6 x 15     | 5                                                                                                          |                 |                                                 |             |                |  |
|----|---------------------------------------------|-------------|--------------|------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------|-------------|----------------|--|
| ## |                                             | shortnam    | africa       | lat_abst                                                                                                   | malfal94        | avexpr                                          | logpgp95    | logem4         |  |
| ## |                                             | <chr></chr> | <dbl></dbl>  | <dbl></dbl>                                                                                                | <dbl></dbl>     | <dbl></dbl>                                     | <dbl></dbl> | <dbl></dbl>    |  |
| ## | 1                                           | AFG         | Θ            | 0.367                                                                                                      | 0.00372         | NA                                              | NA          | 4.54           |  |
| ## | 2                                           | AG0         | 1            | 0.137                                                                                                      | 0.950           | 5.36                                            | 7.77        | 5.63           |  |
| ## | 3                                           | ARE         | Θ            | 0.267                                                                                                      | 0.0123          | 7.18                                            | 9.80        | NA             |  |
| ## | 4                                           | ARG         | Θ            | 0.378                                                                                                      | Θ               | 6.39                                            | 9.13        | 4.23           |  |
| ## | 5                                           | ARM         | Θ            | 0.444                                                                                                      | Θ               | NA                                              | 7.68        | NA             |  |
| ## | 6                                           | AUS         | Θ            | 0.300                                                                                                      | Θ               | 9.32                                            | 9.90        | 2.15           |  |
| ## | #                                           | i 8 more    | variabl      | les: asia                                                                                                  | <dbl>, ye</dbl> | ellow <d< td=""><td>dbl&gt;,</td><td></td></d<> | dbl>,       |                |  |
| ## | #                                           | baseco      | <dbl>,</dbl> | leb95 <d< td=""><td>ol&gt;, imr9</td><td>5 <dbl></dbl></td><td>, meantemp</td><td>o <dbl>,</dbl></td></d<> | ol>, imr9       | 5 <dbl></dbl>                                   | , meantemp  | o <dbl>,</dbl> |  |
| ## | # # lt100km <dbl>, latabs <dbl></dbl></dbl> |             |              |                                                                                                            |                 |                                                 |             |                |  |

#### AJR scatterplot



$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

• We are going to assume a linear model:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

• Data:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

- Data:
  - Dependent variable: Y<sub>i</sub>

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

- Data:
  - Dependent variable: Y<sub>i</sub>
  - Independent variable: X<sub>i</sub>

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

- Data:
  - Dependent variable: Y<sub>i</sub>
  - Independent variable: X<sub>i</sub>
- Population parameters:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

- Data:
  - Dependent variable: Y<sub>i</sub>
  - Independent variable: X<sub>i</sub>
- Population parameters:
  - Population intercept:  $\beta_0$

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

- Data:
  - Dependent variable: Y<sub>i</sub>
  - Independent variable: X<sub>i</sub>
- Population parameters:
  - Population intercept:  $\beta_0$
  - Population slope: β<sub>1</sub>

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

- Data:
  - Dependent variable: Y<sub>i</sub>
  - Independent variable: X<sub>i</sub>
- Population parameters:
  - Population intercept:  $\beta_0$
  - Population slope: β<sub>1</sub>
- Error/disturbance: *ε<sub>i</sub>*

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

- Data:
  - Dependent variable: Y<sub>i</sub>
  - Independent variable: X<sub>i</sub>
- Population parameters:
  - Population intercept:  $\beta_0$
  - Population slope: β<sub>1</sub>
- Error/disturbance: *ε<sub>i</sub>* 
  - Represents all unobserved error factors influencing Y<sub>i</sub> other than X<sub>i</sub>.

• How do we figure out the best line to draw?

- How do we figure out the best line to draw?
  - Alt question: how do we figure out  $\beta_0$  and  $\beta_1$ ?

- How do we figure out the best line to draw?
  - Alt question: how do we figure out  $\beta_0$  and  $\beta_1$ ?
  - $(\hat{\beta}_0, \hat{\beta}_1)$ : estimated coefficients.

- How do we figure out the best line to draw?
  - Alt question: how do we figure out  $\beta_0$  and  $\beta_1$ ?
  - $(\hat{\beta}_0, \hat{\beta}_1)$ : estimated coefficients.
  - $\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i$ : predicted/fitted value.

- How do we figure out the best line to draw?
  - Alt question: how do we figure out  $\beta_0$  and  $\beta_1$ ?
  - $(\hat{\beta}_0, \hat{\beta}_1)$ : estimated coefficients.
  - $\widehat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$ : predicted/fitted value.

• 
$$\hat{\epsilon}_i = Y_i - \widehat{Y}$$
: residual.

- How do we figure out the best line to draw?
  - Alt question: how do we figure out  $\beta_0$  and  $\beta_1$ ?
  - $(\hat{\beta}_0, \hat{\beta}_1)$ : estimated coefficients.
  - $\widehat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$ : predicted/fitted value.
  - $\hat{\epsilon}_i = Y_i \widehat{Y}$ : residual.
- Get these estimates by the **least squares method**.

- How do we figure out the best line to draw?
  - Alt question: how do we figure out  $\beta_0$  and  $\beta_1$ ?
  - $(\hat{\beta}_0, \hat{\beta}_1)$ : estimated coefficients.
  - $\widehat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$ : predicted/fitted value.
  - $\hat{\epsilon}_i = Y_i \widehat{Y}$ : residual.
- Get these estimates by the least squares method.
- Minimize the sum of the squared residuals (SSR):

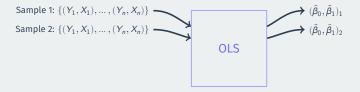
$$\mathsf{SSR} = \sum_{i=1}^n \hat{\epsilon}_i^2 = \sum_{i=1}^n (Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i)^2$$

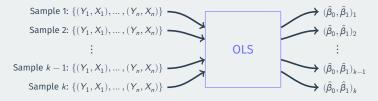
- Least squares is an **estimator** 
  - it's a machine that we plug data into and we get out estimates.

- Least squares is an estimator
  - it's a machine that we plug data into and we get out estimates.

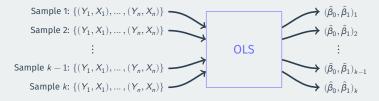




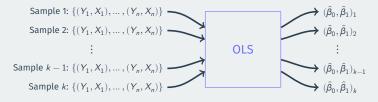




• it's a machine that we plug data into and we get out estimates.



• Just like the sample mean or difference in sample means



- Just like the sample mean or difference in sample means
- $\rightsquigarrow$  sampling distribution with a standard error, etc.

• Let's take a simulation approach to demonstrate:

- Let's take a simulation approach to demonstrate:
  - Pretend that the AJR data represents the population of interest

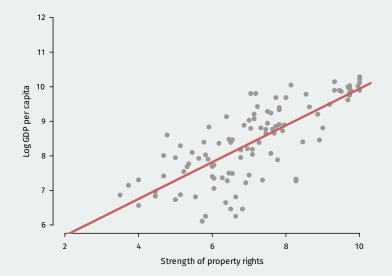
- Let's take a simulation approach to demonstrate:
  - Pretend that the AJR data represents the population of interest
  - See how the line varies from sample to sample

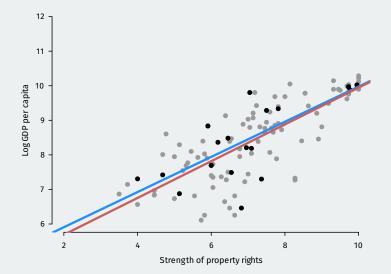
- Let's take a simulation approach to demonstrate:
  - Pretend that the AJR data represents the population of interest
  - See how the line varies from sample to sample
- 1. Randomly sample n = 30 countries w/ replacement using sample()

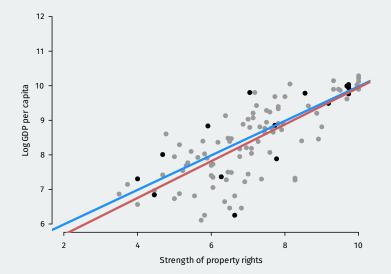
- Let's take a simulation approach to demonstrate:
  - Pretend that the AJR data represents the population of interest
  - See how the line varies from sample to sample
- 1. Randomly sample n = 30 countries w/ replacement using sample()
- 2. Use lm() to calculate the OLS estimates of the slope and intercept

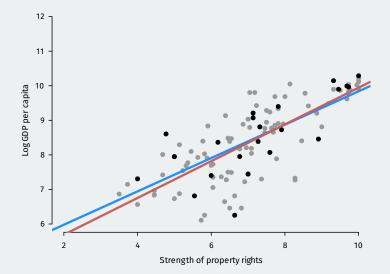
- Let's take a simulation approach to demonstrate:
  - Pretend that the AJR data represents the population of interest
  - See how the line varies from sample to sample
- 1. Randomly sample n = 30 countries w/ replacement using sample()
- 2. Use lm() to calculate the OLS estimates of the slope and intercept
- 3. Plot the estimated regression line

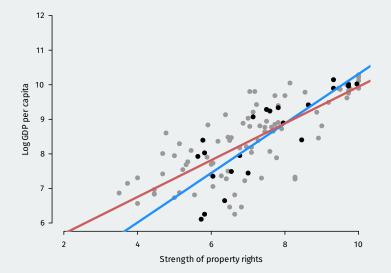
## **Population regression**

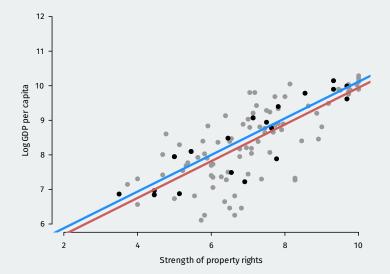


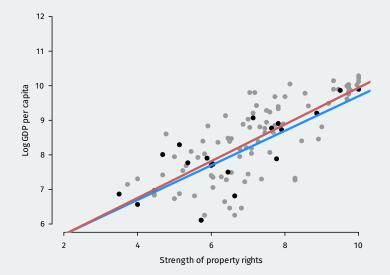


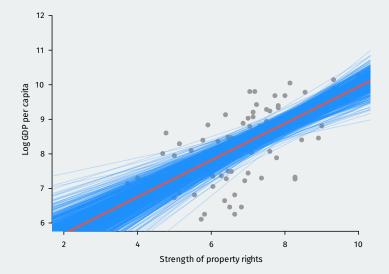






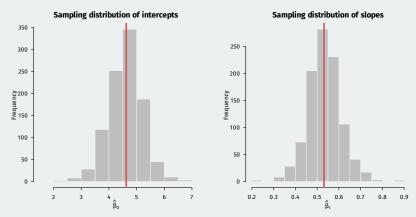






# **Sampling distribution of OLS**

• Estimated slope and intercept vary between samples, centered on truth.



+  $\hat{eta}_0$  and  $\hat{eta}_1$  are random variables

- +  $\hat{eta}_0$  and  $\hat{eta}_1$  are random variables
  - Are they on average equal to the true values (bias)?

- +  $\hat{eta}_0$  and  $\hat{eta}_1$  are random variables
  - Are they on average equal to the true values (bias)?
  - How spread out are they around their center (variance)?

- +  $\hat{eta}_0$  and  $\hat{eta}_1$  are random variables
  - Are they on average equal to the true values (bias)?
  - How spread out are they around their center (variance)?
- Under minimal conditions,  $\hat{\beta}_0$  and  $\hat{\beta}_1$  are unbiased for the population line of best fit, but...

- +  $\hat{eta}_0$  and  $\hat{eta}_1$  are random variables
  - Are they on average equal to the true values (bias)?
  - How spread out are they around their center (variance)?
- Under minimal conditions,  $\hat{\beta}_0$  and  $\hat{\beta}_1$  are unbiased for the population line of best fit, but...
  - This might be misleading if the true relationship is nonlinear.

- +  $\hat{eta}_0$  and  $\hat{eta}_1$  are random variables
  - Are they on average equal to the true values (bias)?
  - How spread out are they around their center (variance)?
- Under minimal conditions,  $\hat{\beta}_0$  and  $\hat{\beta}_1$  are unbiased for the population line of best fit, but...
  - This might be misleading if the true relationship is nonlinear.
  - May not represent a causal effect unless causal assumptions hold.

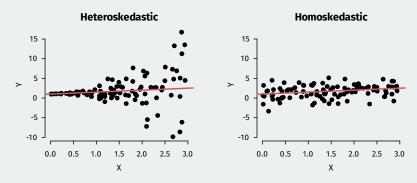
R will also calculate an estimate of the standard error:  $\widehat{SE}(\hat{\beta}_1)$ 

R will also calculate an estimate of the standard error:  $\widehat{SE}(\hat{\beta}_1)$ 

Default estimators for the SEs assume **homoskedasticity** or that the spread around the regression line is the same for all values of the independent variables.

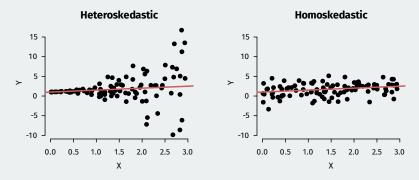
R will also calculate an estimate of the standard error:  $\widehat{SE}(\hat{\beta}_1)$ 

Default estimators for the SEs assume **homoskedasticity** or that the spread around the regression line is the same for all values of the independent variables.



R will also calculate an estimate of the standard error:  $\widehat{SE}(\hat{\beta}_1)$ 

Default estimators for the SEs assume **homoskedasticity** or that the spread around the regression line is the same for all values of the independent variables.



Relatively easy fixes exist, but beyond the scope of this class.



+  $(\hat{m{eta}}_0,\hat{m{eta}}_1)$  can be written as weighted averages of the outcome...



- +  $(\hat{m{eta}}_0,\hat{m{eta}}_1)$  can be written as weighted averages of the outcome...
  - Which means they follow the Central Limit Theorem!



- +  $(\hat{m{eta}}_0,\hat{m{eta}}_1)$  can be written as weighted averages of the outcome...
  - Which means they follow the Central Limit Theorem!
- + BAM! 95% confidence intervals:  $\hat{\pmb{\beta}}_1 \pm 1.96 imes \widehat{\mathsf{SE}}(\hat{\pmb{\beta}}_1)$



- +  $(\hat{m{eta}}_0,\hat{m{eta}}_1)$  can be written as weighted averages of the outcome...
  - Which means they follow the Central Limit Theorem!
- + BAM! 95% confidence intervals:  $\hat{m{eta}}_1 \pm 1.96 imes \widehat{\mathsf{SE}}(\hat{m{eta}}_1)$
- BOOM! Hypothesis tests:



- +  $(\hat{m{eta}}_0,\hat{m{eta}}_1)$  can be written as weighted averages of the outcome...
  - Which means they follow the Central Limit Theorem!
- + BAM! 95% confidence intervals:  $\hat{m{eta}}_1 \pm 1.96 imes \widehat{\mathsf{SE}}(\hat{m{eta}}_1)$
- BOOM! Hypothesis tests:
  - Null hypothesis:  $H_0: \beta_1 = \beta_1^*$



- +  $(\hat{m{eta}}_0,\hat{m{eta}}_1)$  can be written as weighted averages of the outcome...
  - Which means they follow the Central Limit Theorem!
- + BAM! 95% confidence intervals:  $\hat{m{eta}}_1 \pm 1.96 imes \widehat{\mathsf{SE}}(\hat{m{eta}}_1)$
- BOOM! Hypothesis tests:
  - Null hypothesis:  $H_0: \beta_1 = \beta_1^*$
  - Test statistic:  $\frac{\hat{\beta}_1 \beta_1^*}{\widehat{\mathsf{SE}}(\hat{\beta}_1)} \sim N(0, 1)$



- +  $(\hat{m{eta}}_0,\hat{m{eta}}_1)$  can be written as weighted averages of the outcome...
  - Which means they follow the Central Limit Theorem!
- + BAM! 95% confidence intervals:  $\hat{m{eta}}_1 \pm 1.96 imes \widehat{\mathsf{SE}}(\hat{m{eta}}_1)$
- BOOM! Hypothesis tests:
  - Null hypothesis:  $H_0: \beta_1 = \beta_1^*$
  - Test statistic:  $\frac{\hat{\beta}_1 \beta_1^*}{\widehat{SE}(\hat{\beta}_1)} \sim N(0, 1)$
  - Usual test is of  $\beta_1 = 0$ .



- +  $(\hat{m{eta}}_0,\hat{m{eta}}_1)$  can be written as weighted averages of the outcome...
  - Which means they follow the Central Limit Theorem!
- + BAM! 95% confidence intervals:  $\hat{m{eta}}_1 \pm 1.96 imes \widehat{\mathsf{SE}}(\hat{m{eta}}_1)$
- BOOM! Hypothesis tests:
  - Null hypothesis:  $H_0: \beta_1 = \beta_1^*$
  - Test statistic:  $\frac{\hat{\beta}_1 \beta_1^*}{\widehat{SE}(\hat{\beta}_1)} \sim N(0, 1)$
  - Usual test is of  $\beta_1 = 0$ .
  - $\hat{\beta}_1$  is **statistically significant** if its p-value from this test is below some threshold (usually 0.05)

# ajr.reg <- lm(logpgp95 ~ avexpr, data = ajr) summary(ajr.reg)</pre>

```
##
## Call:
## lm(formula = logpgp95 ~ avexpr, data = ajr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.902 -0.316 0.138 0.422 1.441
##
## Coefficients:
##
      Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.6261 0.3006 15.4 <2e-16 ***
## avexpr 0.5319 0.0406 13.1 <2e-16 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.718 on 109 degrees of freedom
## (52 observations deleted due to missingness)
## Multiple R-squared: 0.611, Adjusted R-squared: 0.608
## F-statistic: 171 on 1 and 109 DF, p-value: <2e-16
```

# library(broom) tidy(ajr.reg)

| ## # | A tibble: 2 | x 5         |             |             |             |
|------|-------------|-------------|-------------|-------------|-------------|
| ##   | term        | estimate    | std.error   | statistic   | p.value     |
| ##   | <chr></chr> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> |
| ## 1 | (Intercept) | 4.63        | 0.301       | 15.4        | 4.28e-29    |
| ## 2 | avexpr      | 0.532       | 0.0406      | 13.1        | 4.16e-24    |

# **Multiple regression**

• Correlation doesn't imply causation

# **Multiple regression**

- Correlation doesn't imply causation
- Omitted variables  $\rightsquigarrow$  violation of exogeneity

## **Multiple regression**

- Correlation doesn't imply causation
- Omitted variables  $\rightsquigarrow$  violation of exogeneity
- You can adjust for multiple confounding variables:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_p X_{ip} + \epsilon_i$$

- Correlation doesn't imply causation
- Omitted variables  $\rightsquigarrow$  violation of exogeneity
- You can adjust for multiple confounding variables:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_p X_{ip} + \epsilon_i$$

 Interpretation of β<sub>j</sub>: an increase in the outcome associated with a one-unit increase in X<sub>ij</sub> when other variables don't change their values

- Correlation doesn't imply causation
- Omitted variables  $\rightsquigarrow$  violation of exogeneity
- You can adjust for multiple confounding variables:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_p X_{ip} + \epsilon_i$$

- Interpretation of β<sub>j</sub>: an increase in the outcome associated with a one-unit increase in X<sub>ij</sub> when other variables don't change their values
- Inference:

- Correlation doesn't imply causation
- Omitted variables  $\rightsquigarrow$  violation of exogeneity
- You can adjust for multiple confounding variables:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_p X_{ip} + \epsilon_i$$

- Interpretation of β<sub>j</sub>: an increase in the outcome associated with a one-unit increase in X<sub>ij</sub> when other variables don't change their values
- Inference:
  - Confidence intervals constructed exactly the same for  $\hat{\beta}_i$

- Correlation doesn't imply causation
- Omitted variables  $\rightsquigarrow$  violation of exogeneity
- You can adjust for multiple confounding variables:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_p X_{ip} + \epsilon_i$$

- Interpretation of β<sub>j</sub>: an increase in the outcome associated with a one-unit increase in X<sub>ij</sub> when other variables don't change their values
- Inference:
  - Confidence intervals constructed exactly the same for  $\hat{\beta}_i$
  - Hypothesis tests done exactly the same for  $\hat{\beta}_i$

- Correlation doesn't imply causation
- Omitted variables  $\rightsquigarrow$  violation of exogeneity
- You can adjust for multiple confounding variables:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_p X_{ip} + \epsilon_i$$

- Interpretation of β<sub>j</sub>: an increase in the outcome associated with a one-unit increase in X<sub>ij</sub> when other variables don't change their values
- Inference:
  - Confidence intervals constructed exactly the same for  $\hat{\beta}_i$
  - Hypothesis tests done exactly the same for  $\hat{\beta}_i$
  - $\rightsquigarrow$  interpret p-values the same as before.

# Using knitr::kable to produce tables

ajr.multreg <- lm(logpgp95 ~ avexpr + lat\_abst + asia + africa, data = ajr)
tidy(ajr.multreg) |>
knitr::kable(digits = 3)

| term        | estimate | std.error | statistic | p.value |
|-------------|----------|-----------|-----------|---------|
| (Intercept) | 5.840    | 0.339     | 17.239    | 0.000   |
| avexpr      | 0.394    | 0.050     | 7.843     | 0.000   |
| lat_abst    | 0.312    | 0.444     | 0.703     | 0.484   |
| asia        | -0.170   | 0.153     | -1.108    | 0.270   |
| africa      | -0.930   | 0.165     | -5.628    | 0.000   |

2/ Presenting OLS regressions

• In papers, you'll often find regression tables that have several models.

- In papers, you'll often find regression tables that have several models.
- Each column is a different regression:

- In papers, you'll often find regression tables that have several models.
- Each column is a different regression:
  - Might differ by independent variables, dependent variables, sample, etc.

- In papers, you'll often find regression tables that have several models.
- Each column is a different regression:
  - Might differ by independent variables, dependent variables, sample, etc.
- Standard errors, p-values, sample size, and  $R^2$  may be reported as well.

VOL. 91 NO. 5

#### ACEMOGLU ET AL.: THE COLONIAL ORIGINS OF DEVELOPMENT

1379

|                                             | Whole<br>world<br>(1)                            | Base<br>sample<br>(2) | Whole<br>world<br>(3) | Whole<br>world<br>(4) | Base<br>sample<br>(5) | Base<br>sample<br>(6)             | Whole<br>world<br>(7) | Base<br>sample<br>(8) |
|---------------------------------------------|--------------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------------------|-----------------------|-----------------------|
|                                             | Dependent variable is log GDP per capita in 1995 |                       |                       |                       | is log ou             | t variable<br>tput per<br>in 1988 |                       |                       |
| Average protection<br>against expropriation | 0.54<br>(0.04)                                   | 0.52<br>(0.06)        | 0.47<br>(0.06)        | 0.43<br>(0.05)        | 0.47<br>(0.06)        | 0.41<br>(0.06)                    | 0.45<br>(0.04)        | 0.46<br>(0.06)        |
| risk, 1985–1995<br>Latitude                 |                                                  |                       | 0.89<br>(0.49)        | 0.37<br>(0.51)        | 1.60<br>(0.70)        | 0.92<br>(0.63)                    |                       |                       |
| Asia dummy                                  |                                                  |                       | (0.49)                | -0.62<br>(0.19)       | (0.70)                | -0.60<br>(0.23)                   |                       |                       |
| Africa dummy                                |                                                  |                       |                       | -1.00<br>(0.15)       |                       | -0.90<br>(0.17)                   |                       |                       |
| "Other" continent dummy                     |                                                  |                       |                       | -0.25<br>(0.20)       |                       | -0.04<br>(0.32)                   |                       |                       |
| $R^2$                                       | 0.62                                             | 0.54                  | 0.63                  | 0.73                  | 0.56                  | 0.69                              | 0.55                  | 0.49                  |
| Number of observations                      | 110                                              | 64                    | 110                   | 110                   | 64                    | 64                                | 108                   | 61                    |

TABLE 2-OLS REGRESSIONS

# modelsummary() to produce tables

We can use modelsummary() to produce a table. It takes a list of outputs from lm and aligns them in the correct way.

modelsummary::modelsummary(list(ajr.reg, ajr.multreg))

#### Output

modelsummary::modelsummary(list(ajr.reg, ajr.multreg))

|             | (1)      | (2)      |
|-------------|----------|----------|
| (Intercept) | 4.626    | 5.840    |
|             | (0.301)  | (0.339)  |
| avexpr      | 0.532    | 0.394    |
|             | (0.041)  | (0.050)  |
| lat_abst    |          | 0.312    |
|             |          | (0.444)  |
| asia        |          | -0.170   |
|             |          | (0.153)  |
| africa      |          | -0.930   |
|             |          | (0.165)  |
| Num.Obs.    | 111      | 111      |
| R2          | 0.611    | 0.713    |
| R2 Adj.     | 0.608    | 0.703    |
| AIC         | 245.4    | 217.6    |
| BIC         | 253.5    | 233.8    |
| Log.Lik.    | -119.709 | -102.795 |
| RMSE        | 0.71     | 0.61     |

## Cleaning up the goodness of fit statistics

#### modelsummary::modelsummary(

list(ajr.reg, ajr.multreg),

gof\_map = c("nobs", "r.squared", "adj.r.squared"))

|             | (1)     | (2)     |
|-------------|---------|---------|
| (Intercept) | 4.626   | 5.840   |
|             | (0.301) | (0.339) |
| avexpr      | 0.532   | 0.394   |
|             | (0.041) | (0.050) |
| lat_abst    |         | 0.312   |
|             |         | (0.444) |
| asia        |         | -0.170  |
|             |         | (0.153) |
| africa      |         | -0.930  |
|             |         | (0.165) |
| Num.Obs.    | 111     | 111     |
| R2          | 0.611   | 0.713   |
| R2 Adj.     | 0.608   | 0.703   |

We can also map the variable names to more readable names using the coef\_map argument. But first, we should do the mapping in a vector. Any term omitted from this vector will be omitted from the table

```
var_labels <- c(
    "avexpr" = "Avg. Expropriation Risk",
    "lat_abst" = "Abs. Value of Latitude",
    "asia" = "Asian country",
    "africa" = "African country"
)
var_labels</pre>
```

| ## |       | avexpr              | lat_abst                 |
|----|-------|---------------------|--------------------------|
| ## | "Avg. | Expropriation Risk" | "Abs. Value of Latitude" |
| ## |       | asia                | africa                   |
| ## |       | "Asian country"     | "African country"        |

### Nice table

```
modelsummary::modelsummary(
    list(ajr.reg, ajr.multreg),
    coef_map = var_labels,
    gof_map = c("nobs", "r.squared", "adj.r.squared"))
```

|                         | (1)     | (2)     |
|-------------------------|---------|---------|
| Avg. Expropriation Risk | 0.532   | 0.394   |
|                         | (0.041) | (0.050) |
| Abs. Value of Latitude  |         | 0.312   |
|                         |         | (0.444) |
| Asian country           |         | -0.170  |
|                         |         | (0.153) |
| African country         |         | -0.930  |
|                         |         | (0.165) |
| Num.Obs.                | 111     | 111     |
| R2                      | 0.611   | 0.713   |
| R2 Adj.                 | 0.608   | 0.703   |

# 3/ Wrapping up the class

Important takeaways from the course:

1. Data wrangling and data visualizations are really important skills that you now have!

Important takeaways from the course:

- 1. Data wrangling and data visualizations are really important skills that you now have!
- 2. Causality is hugely important in the world but difficult to establish.

Important takeaways from the course:

- 1. Data wrangling and data visualizations are really important skills that you now have!
- 2. Causality is hugely important in the world but difficult to establish.
- 3. Really important to understand and assess statistical uncertainty when working with data.

# I'm really proud of you!



You've come a long way! Hopefully the tools you learned in this course will help you throughout your life and career!



• Gov 51 with Naijia Liu:



- Gov 51 with Naijia Liu:
  - A more in-depth review of some ideas from Gov 50 including causality and regression plus new models (maybe some machine learning).



- Gov 51 with Naijia Liu:
  - A more in-depth review of some ideas from Gov 50 including causality and regression plus new models (maybe some machine learning).
  - · Really helpful for students looking to write senior theses.



- Gov 51 with Naijia Liu:
  - A more in-depth review of some ideas from Gov 50 including causality and regression plus new models (maybe some machine learning).
  - · Really helpful for students looking to write senior theses.
- Only need 3 more classes to finish the data science track in Gov!



- Gov 51 with Naijia Liu:
  - A more in-depth review of some ideas from Gov 50 including causality and regression plus new models (maybe some machine learning).
  - · Really helpful for students looking to write senior theses.
- Only need 3 more classes to finish the data science track in Gov!
- More theoretical stats side: Stat 110/111



- Gov 51 with Naijia Liu:
  - A more in-depth review of some ideas from Gov 50 including causality and regression plus new models (maybe some machine learning).
  - · Really helpful for students looking to write senior theses.
- Only need 3 more classes to finish the data science track in Gov!
- More theoretical stats side: Stat 110/111
- More CS approach to data science: CS109 (Data Science 1)

## **Thanks!**



Fill out your evaluations!